Automated quantification of airway wall thickness on chest CT using retina U-Nets – Performance evaluation and application to a large cohort of chest CTs of COPD patients

医学 慢性阻塞性肺病 气道 放射科 队列 回顾性队列研究 核医学 内科学 外科
作者
Thomas Weikert,Liene Friebe,Adrian Wilder-Smith,Shan Yang,Jonathan I. Sperl,Dominik Neumann,Abishek Balachandran,Jens Bremerich,Alexander Sauter
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:155: 110460-110460 被引量:8
标识
DOI:10.1016/j.ejrad.2022.110460
摘要

Purpose Airway wall thickening is a consequence of chronic inflammatory processes and usually only qualitatively described in CT radiology reports. The purpose of this study is to automatically quantify airway wall thickness in multiple airway generations and assess the diagnostic potential of this parameter in a large cohort of patients with Chronic Obstructive Pulmonary Disease (COPD). Materials and methods This retrospective, single-center study included a series of unenhanced chest CTs. Inclusion criteria were the mentioning of an explicit COPD GOLD stage in the written radiology report and time period (01/2019–12/2021). A control group included chest CTs with completely unremarkable lungs according to the report. The DICOM images of all cases (axial orientation; slice-thickness: 1 mm; soft-tissue kernel) were processed by an AI algorithm pipeline consisting of (A) a 3D- U-Net for det detection and tracing of the bronchial tree centerlines (B) extraction of image patches perpendicular to the centerlines of the bronchi, and (C) a 2D U-Net for segmentation of airway walls on those patches. The performance of centerline detection and wall segmentation was assessed. The imaging parameter average wall thickness was calculated for bronchus generations 3–8 (AWT3-8) across the lungs. Mean AWT3-8 was compared between five groups (control, COPD Gold I-IV) using non-parametric statistics. Furthermore, the established emphysema score %LAV-950 was calculated and used to classify scans (normal vs. COPD) alone and in combination with AWT3-8. Results A total of 575 chest CTs were processed. Algorithm performance was very good (airway centerline detection sensitivity: 86.9%; airway wall segmentation Dice score: 0.86). AWT3-8 was statistically significantly greater in COPD patients compared to controls (2.03 vs. 1.87 mm, p < 0.001) and increased with COPD stage. The classifier that combined %LAV-950 and AWT3-8 was superior to the classifier using only %LAV-950 (AUC = 0.92 vs. 0.79). Conclusion Airway wall thickness increases in patients suffering from COPD and is automatically quantifiable. AWT3-8 could become a CT imaging parameter in COPD complementing the established emphysema biomarker %LAV-950. Clinical relevance statement Quantitative measurements considering the complete visible bronchial tree instead of qualitative description could enhance radiology reports, allow for precise monitoring of disease progression and diagnosis of early stages of disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助悲凉的溪流采纳,获得10
1秒前
hyx完成签到,获得积分20
2秒前
可爱的函函应助dz采纳,获得10
2秒前
2秒前
4秒前
5秒前
5秒前
科研小小菜鸟完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
彩色夏波发布了新的文献求助10
10秒前
hhhblabla应助勤恳的含玉采纳,获得10
10秒前
YY发布了新的文献求助30
10秒前
cjw完成签到 ,获得积分10
11秒前
Owen应助粗心的chen采纳,获得10
12秒前
13秒前
13秒前
科研通AI5应助高兴123采纳,获得10
14秒前
LIUJC完成签到,获得积分10
17秒前
安笙发布了新的文献求助10
18秒前
坚强的访蕊完成签到,获得积分10
19秒前
执着烧鹅完成签到,获得积分10
21秒前
23秒前
27秒前
27秒前
扎根发布了新的文献求助10
28秒前
杨俊锋完成签到,获得积分20
28秒前
科研通AI5应助科研虫采纳,获得10
29秒前
快乐吗猪完成签到 ,获得积分10
30秒前
yjf完成签到,获得积分10
30秒前
30秒前
31秒前
深情不弱完成签到 ,获得积分10
31秒前
33秒前
香蕉觅云应助hhhhh采纳,获得10
33秒前
34秒前
小酥饼完成签到,获得积分10
34秒前
36秒前
刚刚好完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174