Development of Ti-Mo-Fe alloys combining different plastic deformation mechanisms for improved strength-ductility trade-off and high work hardening rate

材料科学 Twip公司 加工硬化 微观结构 合金 电子背散射衍射 硬化(计算) 延展性(地球科学) 钛合金 可塑性 复合材料 冶金 晶体孪晶 蠕动 图层(电子)
作者
Carolina Catanio Bortolan,Leonardo Contri Campanelli,P. Mengucci,Gianni Barucca,Nicolas Giguère,Nicolas Brodusch,Carlo Paternoster,Claudemiro Bolfarini,Raynald Gauvin,Mantovani Diego
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:925: 166757-166757 被引量:13
标识
DOI:10.1016/j.jallcom.2022.166757
摘要

Titanium-based biomaterials are the gold standard for orthopedic implants; however, they are not generally suitable for the manufacture of intravascular stents. Their low strength-ductility trade-off and low work hardening rate are their main limitations. However, Ni-free alloys are desirable for such application in order to avoid allergic reactions caused by the high Ni-content materials currently applied. Therefore, in this study, three alloys of the Ti-Mo-Fe system (Ti-8Mo-2Fe, Ti-9Mo-1Fe and Ti-10.5Mo-1Fe) were designed to present high strength-ductility compromise and high work hardening rate. Their microstructures, mechanical properties and plastic deformation mechanism were investigated. Athermal ω precipitates were observed in the β matrix of all solution-treated alloys. In the solution-treated β matrix of the Ti-9Mo-1Fe alloy, additional nanometer-sized α" particles were detected by transmission electron microscopy (TEM). Although the combined TWIP/TRIP effects were expected by the design method on the Ti-8Mo-2Fe and Ti-9Mo-1Fe alloys, no TRIP effect was actually observed. In fact, stress-induced martensitic (SIM) transformation occurred mainly at the {332}<113> twins/matrix interfaces for all the strained microstructures and acted as a localized stress-relaxation mechanism, delaying the fracture. Based on the electron backscatter diffraction (EBSD) analyses, in the Ti-8Mo-2Fe and Ti-10.5Mo-1Fe alloys, the formation of a dense network of {332}<113> twins was responsible for their high and steady work hardening rates (1370 and 1120 MPa) and large uniform elongations (22% and 34%). The absence of SIM α" as the primary mechanism of plastic deformation and solid solution hardening of Fe resulted in their high strengths (yield strength of 772 and 523 MPa). In Ti-9Mo-1Fe, the formation of mechanical twinning was hindered, resulting in limited strain-hardening capability and low uniform elongation (6%). The nanometer-sized α" particles in its β matrix along with the athermal ω precipitates are thought to impair the mechanical twinning and the ductility of this alloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的星月完成签到 ,获得积分10
1秒前
牛黄完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
catherine完成签到,获得积分10
17秒前
physicalproblem完成签到,获得积分10
18秒前
24秒前
ChatGPT完成签到,获得积分10
25秒前
GPTea应助科研通管家采纳,获得10
28秒前
丘比特应助科研通管家采纳,获得50
28秒前
28秒前
GPTea应助科研通管家采纳,获得100
28秒前
汉堡包应助科研通管家采纳,获得150
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得50
28秒前
28秒前
NexusExplorer应助科研通管家采纳,获得50
28秒前
30秒前
zzt发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助150
36秒前
aowulan完成签到 ,获得积分10
37秒前
壮观的谷冬完成签到 ,获得积分0
38秒前
sonicker完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助150
46秒前
宇文雨文完成签到 ,获得积分10
52秒前
xiaofeixia完成签到 ,获得积分10
55秒前
迅速的宛海完成签到 ,获得积分10
1分钟前
1分钟前
熊二完成签到,获得积分10
1分钟前
firefox完成签到,获得积分10
1分钟前
青黛完成签到 ,获得积分10
1分钟前
firefox发布了新的文献求助10
1分钟前
画龙点睛完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
nano完成签到 ,获得积分10
1分钟前
qinghe完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
万松辉完成签到,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
张振宇完成签到 ,获得积分10
1分钟前
xyz完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910590
求助须知:如何正确求助?哪些是违规求助? 4186398
关于积分的说明 12999406
捐赠科研通 3953882
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186601
关于科研通互助平台的介绍 1093798