A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images

物候学 普通大麦 遥感 生长季节 环境科学 作物 农学 禾本科 地理 生物
作者
Davoud Ashourloo,Hamed Nematollahi,Alfredo Huete,Hossein Aghighi,Mohsen Azadbakht,Hamid Salehi Shahrabi,Salman Goodarzdashti
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113206-113206 被引量:20
标识
DOI:10.1016/j.rse.2022.113206
摘要

In recent years, various techniques have been developed to generate crop-type maps based on remote sensing data. Wheat and barley are two major cereal crops cultivated as the first and fourth largest grain crops across the globe. The variations in spectral temporal profile of both crops are generally insignificant at small scales and therefore the two crops are phenologically fairly clearly separated; however, at large scale areas the variance of phenological parameters increases for both crops due to the effects of various climatic and orographic factors which adversely influences discrimination of wheat and barley. Additionally, wheat and barley are usually cultivated as both spring and winter or early and late season crops in some areas, making it more difficult to distinguish them. Therefore, developing a new method based on remote sensing data for effective discrimination of wheat and barley is an important necessity in the field of precision agriculture. To this end, this research presents a new phenology-based method to discriminate barley from wheat. In this study, Sentinel-2 (S2) time-series data of a study site in Iran (Markazi) and two sites in the USA (Idaho and North California), are employed. Spectral reflectance values of wheat and barley are examined during the growing season and a new spectral-temporal feature is successfully developed for automatic identification of the barley heading date. The Relief-f algorithm is then employed to select appropriate spectral features of S2 to distinguish wheat from barley at the heading date. Finally, generated spectral features at the heading date are used as input to Support Vector Machine (SVM) and Random Forest (RF) to produce barley and wheat maps. The Kappa coefficient and overall accuracy (OA) obtained for the three study sites are more than 0.67 and 76%, respectively. The findings of this study demonstrate the potential of remote sensing data to identify the phenological growth stages of barley and distinguish it successfully from wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu_jy发布了新的文献求助10
刚刚
典雅涵瑶完成签到,获得积分10
1秒前
善学以致用应助独特寒安采纳,获得10
1秒前
Mircale发布了新的文献求助10
1秒前
WY发布了新的文献求助30
1秒前
2秒前
奈何完成签到,获得积分10
2秒前
勤恳风华完成签到,获得积分10
3秒前
xiaohuihui发布了新的文献求助10
4秒前
bgx完成签到,获得积分20
5秒前
Mircale完成签到,获得积分20
5秒前
大林发布了新的文献求助30
6秒前
退退退上尉完成签到,获得积分10
7秒前
Elsa完成签到,获得积分10
8秒前
夏晴发布了新的文献求助10
11秒前
栗子应助MaYue采纳,获得10
12秒前
Adi完成签到,获得积分10
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
14秒前
不配.应助科研通管家采纳,获得10
14秒前
14秒前
Gauss应助科研通管家采纳,获得30
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得20
14秒前
16秒前
莉莉完成签到 ,获得积分10
19秒前
weiquanfei完成签到 ,获得积分10
21秒前
橙子慢慢来完成签到,获得积分10
22秒前
cqy53完成签到 ,获得积分10
23秒前
科研通AI2S应助Sandy采纳,获得10
23秒前
漂亮的魂幽完成签到,获得积分10
24秒前
0109完成签到,获得积分10
24秒前
swmyybh应助夏晴采纳,获得30
26秒前
28秒前
28秒前
30秒前
爱尔兰海鲜面完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620