A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images

物候学 普通大麦 遥感 生长季节 环境科学 作物 农学 禾本科 地理 生物
作者
Davoud Ashourloo,Hamed Nematollahi,Alfredo Huete,Hossein Aghighi,Mohsen Azadbakht,Hamid Salehi Shahrabi,Salman Goodarzdashti
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:280: 113206-113206 被引量:39
标识
DOI:10.1016/j.rse.2022.113206
摘要

In recent years, various techniques have been developed to generate crop-type maps based on remote sensing data. Wheat and barley are two major cereal crops cultivated as the first and fourth largest grain crops across the globe. The variations in spectral temporal profile of both crops are generally insignificant at small scales and therefore the two crops are phenologically fairly clearly separated; however, at large scale areas the variance of phenological parameters increases for both crops due to the effects of various climatic and orographic factors which adversely influences discrimination of wheat and barley. Additionally, wheat and barley are usually cultivated as both spring and winter or early and late season crops in some areas, making it more difficult to distinguish them. Therefore, developing a new method based on remote sensing data for effective discrimination of wheat and barley is an important necessity in the field of precision agriculture. To this end, this research presents a new phenology-based method to discriminate barley from wheat. In this study, Sentinel-2 (S2) time-series data of a study site in Iran (Markazi) and two sites in the USA (Idaho and North California), are employed. Spectral reflectance values of wheat and barley are examined during the growing season and a new spectral-temporal feature is successfully developed for automatic identification of the barley heading date. The Relief-f algorithm is then employed to select appropriate spectral features of S2 to distinguish wheat from barley at the heading date. Finally, generated spectral features at the heading date are used as input to Support Vector Machine (SVM) and Random Forest (RF) to produce barley and wheat maps. The Kappa coefficient and overall accuracy (OA) obtained for the three study sites are more than 0.67 and 76%, respectively. The findings of this study demonstrate the potential of remote sensing data to identify the phenological growth stages of barley and distinguish it successfully from wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
直率的问筠完成签到,获得积分10
1秒前
不发SCI不改名完成签到,获得积分10
1秒前
2秒前
3秒前
柯睿渊完成签到,获得积分10
3秒前
独特乘云完成签到,获得积分10
3秒前
贾克斯发布了新的文献求助10
3秒前
tlh完成签到 ,获得积分10
4秒前
陈彦滨完成签到 ,获得积分10
4秒前
5秒前
7秒前
7秒前
css完成签到,获得积分10
7秒前
Liufgui应助Re采纳,获得20
7秒前
Nugget完成签到,获得积分10
7秒前
yar应助潇湘雪月采纳,获得10
8秒前
宇宇发布了新的文献求助10
8秒前
shufessm完成签到,获得积分0
10秒前
10秒前
14秒前
幸福大白发布了新的文献求助30
14秒前
15秒前
肿瘤柳叶刀完成签到,获得积分10
16秒前
17秒前
17秒前
xxddw发布了新的文献求助10
18秒前
20秒前
GS11完成签到,获得积分10
21秒前
邓紫依完成签到,获得积分10
22秒前
cdytjt发布了新的文献求助60
22秒前
ai zs发布了新的文献求助10
22秒前
搜集达人应助zyw采纳,获得10
23秒前
24秒前
攀攀完成签到,获得积分10
25秒前
25秒前
Aprilapple发布了新的文献求助10
26秒前
张雯思发布了新的文献求助10
26秒前
27秒前
越野蟹关注了科研通微信公众号
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174