Hydrophobic and Stable Graphene-Modified Organohydrogel Based Sensitive, Stretchable, and Self-Healable Strain Sensors for Human-Motion Detection in Various Scenarios

石墨烯 标度系数 材料科学 纳米技术 应变计 复合数 涂层 氧化物 复合材料 制作 医学 病理 冶金 替代医学
作者
Jin Wu,Wenxi Huang,Zixuan Wu,Xing Yang,Ajay Giri Prakash Kottapalli,Xi Xie,Yubin Zhou,Kai Tao
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:4 (9): 1616-1629 被引量:69
标识
DOI:10.1021/acsmaterialslett.2c00230
摘要

Developing stretchable/wearable strain sensors in different application scenarios is a global demand for creating a smart society and promoting healthcare, whereas existing hydrogel-based strain sensors suffer from limited sensitivity, low conductance and hydrophilicity, making them difficult to operate underwater. In this work, a highly sensitive, stretchable, and hydrophobic strain sensor is fabricated by coating a layer of reduced graphene oxide (rGO) sheets on the surface of organohydrogel. Furthermore, a facile solvent-replacement approach is utilized to enhance the anti-freezing and anti-drying abilities of hydrogel simultaneously by incorporating propanediol in the solvent. Consequently, the obtained rGO-organohydrogel composite strain sensor features a high gauge factor of 140, a low detection limit of 0.1% strain, a wide detection range (0–400% strain), a fast response time of 190 ms, excellent stability and repeatability, and high hydrophobicity (contact angle of 122°), making it applicable for a wide range of application scenarios, such as the real-time and continuous monitoring of various human motions in extremely cold (−60 °C), dry, and underwater environments. The sensitivity of an rGO-modified organohydrogel strain sensor is more than 30 times higher than that of its unmodified counterpart, which is attributed to the cracking and tunneling effects introduced by the highly conductive rGO surface layer upon stretching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ATOM发布了新的文献求助10
刚刚
1秒前
安南完成签到 ,获得积分10
3秒前
bofu发布了新的文献求助10
3秒前
科研通AI5应助123采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
典雅问寒应助科研通管家采纳,获得10
5秒前
甜心院士应助科研通管家采纳,获得10
5秒前
坚强亦丝应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
zho应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
12345完成签到,获得积分10
5秒前
6秒前
丘比特应助kyhappy_2002采纳,获得10
6秒前
小俞发布了新的文献求助10
7秒前
坦率的海豚完成签到,获得积分10
7秒前
安南关注了科研通微信公众号
7秒前
ni完成签到 ,获得积分10
7秒前
9秒前
11秒前
11秒前
bkagyin应助文献求助111采纳,获得10
12秒前
bofu发布了新的文献求助30
12秒前
星星完成签到 ,获得积分10
13秒前
15秒前
默默完成签到,获得积分10
16秒前
123发布了新的文献求助10
17秒前
兔兔发布了新的文献求助10
17秒前
bofu发布了新的文献求助10
20秒前
斯文败类应助6528以采纳,获得10
20秒前
慧海拾穗完成签到 ,获得积分10
22秒前
Atlantic完成签到,获得积分10
22秒前
23秒前
情怀应助YEE采纳,获得30
24秒前
刘明生发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196