亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development, multi-institutional external validation, and algorithmic audit of an artificial intelligence-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA) for patients undergoing radical prostatectomy: a retrospective cohort study

列线图 前列腺切除术 医学 接收机工作特性 逻辑回归 审计 回顾性队列研究 前列腺癌 队列 人工智能 机器学习 癌症 外科 肿瘤科 计算机科学 内科学 会计 业务
作者
Jethro C.C. Kwong,Adree Khondker,Eric Meng,Nicholas Taylor,Cynthia Kuk,Nathan Perlis,Girish S. Kulkarni,Robert J. Hamilton,Neil Fleshner,Antonio Finelli,Theodorus H. van der Kwast,Amna Ali,Munir Jamal,Frank Papanikolaou,Thomas Short,John R. Srigley,Valentin Colinet,Alexandre Peltier,Romain Diamand,Yolène Lefebvre,Qusay Mandoorah,Rafael Sanchez‐Salas,Petr Macek,Xavier Cathelineau,Martin Eklund,Alistair E. W. Johnson,Andrew Feifer,Alexandre R. Zlotta
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (7): e435-e445 被引量:6
标识
DOI:10.1016/s2589-7500(23)00067-5
摘要

BackgroundAccurate prediction of side-specific extraprostatic extension (ssEPE) is essential for performing nerve-sparing surgery to mitigate treatment-related side-effects such as impotence and incontinence in patients with localised prostate cancer. Artificial intelligence (AI) might provide robust and personalised ssEPE predictions to better inform nerve-sparing strategy during radical prostatectomy. We aimed to develop, externally validate, and perform an algorithmic audit of an AI-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA).MethodsEach prostatic lobe was treated as an individual case such that each patient contributed two cases to the overall cohort. SEPERA was trained on 1022 cases from a community hospital network (Trillium Health Partners; Mississauga, ON, Canada) between 2010 and 2020. Subsequently, SEPERA was externally validated on 3914 cases across three academic centres: Princess Margaret Cancer Centre (Toronto, ON, Canada) from 2008 to 2020; L'Institut Mutualiste Montsouris (Paris, France) from 2010 to 2020; and Jules Bordet Institute (Brussels, Belgium) from 2015 to 2020. Model performance was characterised by area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), calibration, and net benefit. SEPERA was compared against contemporary nomograms (ie, Sayyid nomogram, Soeterik nomogram [non-MRI and MRI]), as well as a separate logistic regression model using the same variables included in SEPERA. An algorithmic audit was performed to assess model bias and identify common patient characteristics among predictive errors.FindingsOverall, 2468 patients comprising 4936 cases (ie, prostatic lobes) were included in this study. SEPERA was well calibrated and had the best performance across all validation cohorts (pooled AUROC of 0·77 [95% CI 0·75–0·78] and pooled AUPRC of 0·61 [0·58–0·63]). In patients with pathological ssEPE despite benign ipsilateral biopsies, SEPERA correctly predicted ssEPE in 72 (68%) of 106 cases compared with the other models (47 [44%] in the logistic regression model, none in the Sayyid model, 13 [12%] in the Soeterik non-MRI model, and five [5%] in the Soeterik MRI model). SEPERA had higher net benefit than the other models to predict ssEPE, enabling more patients to safely undergo nerve-sparing. In the algorithmic audit, no evidence of model bias was observed, with no significant difference in AUROC when stratified by race, biopsy year, age, biopsy type (systematic only vs systematic and MRI-targeted biopsy), biopsy location (academic vs community), and D'Amico risk group. According to the audit, the most common errors were false positives, particularly for older patients with high-risk disease. No aggressive tumours (ie, grade >2 or high-risk disease) were found among false negatives.InterpretationWe demonstrated the accuracy, safety, and generalisability of using SEPERA to personalise nerve-sparing approaches during radical prostatectomy.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
19秒前
sfx发布了新的文献求助10
24秒前
sfx完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
47秒前
FashionBoy应助小梦采纳,获得10
59秒前
1分钟前
6666666666完成签到 ,获得积分10
1分钟前
1分钟前
Owen应助bbdd2334采纳,获得10
1分钟前
1分钟前
爱宝乐宝福宝完成签到,获得积分10
1分钟前
ii完成签到 ,获得积分10
1分钟前
111111111完成签到,获得积分10
1分钟前
心灵美语兰完成签到 ,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
善学以致用应助Perry采纳,获得10
3分钟前
3分钟前
bbdd2334发布了新的文献求助10
3分钟前
3分钟前
舒适踏歌发布了新的文献求助20
3分钟前
3分钟前
彭于晏应助bbdd2334采纳,获得10
3分钟前
JrPaleo101发布了新的文献求助50
4分钟前
4分钟前
4分钟前
小梦发布了新的文献求助10
4分钟前
4分钟前
ccyy完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
醉熏的飞薇完成签到,获得积分10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264