Development, multi-institutional external validation, and algorithmic audit of an artificial intelligence-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA) for patients undergoing radical prostatectomy: a retrospective cohort study

列线图 前列腺切除术 医学 接收机工作特性 逻辑回归 审计 回顾性队列研究 前列腺癌 队列 人工智能 机器学习 癌症 外科 肿瘤科 计算机科学 内科学 会计 业务
作者
Jethro C.C. Kwong,Adree Khondker,Eric Meng,Nicholas Taylor,Cynthia Kuk,Nathan Perlis,Girish S. Kulkarni,Robert J. Hamilton,Neil Fleshner,Antonio Finelli,Theodorus H. van der Kwast,Amna Ali,Munir Jamal,Frank Papanikolaou,Thomas Short,John R. Srigley,Valentin Colinet,Alexandre Peltier,Romain Diamand,Yolène Lefebvre,Qusay Mandoorah,Rafael Sanchez‐Salas,Petr Macek,Xavier Cathelineau,Martin Eklund,Alistair E. W. Johnson,Andrew Feifer,Alexandre R. Zlotta
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (7): e435-e445 被引量:6
标识
DOI:10.1016/s2589-7500(23)00067-5
摘要

BackgroundAccurate prediction of side-specific extraprostatic extension (ssEPE) is essential for performing nerve-sparing surgery to mitigate treatment-related side-effects such as impotence and incontinence in patients with localised prostate cancer. Artificial intelligence (AI) might provide robust and personalised ssEPE predictions to better inform nerve-sparing strategy during radical prostatectomy. We aimed to develop, externally validate, and perform an algorithmic audit of an AI-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA).MethodsEach prostatic lobe was treated as an individual case such that each patient contributed two cases to the overall cohort. SEPERA was trained on 1022 cases from a community hospital network (Trillium Health Partners; Mississauga, ON, Canada) between 2010 and 2020. Subsequently, SEPERA was externally validated on 3914 cases across three academic centres: Princess Margaret Cancer Centre (Toronto, ON, Canada) from 2008 to 2020; L'Institut Mutualiste Montsouris (Paris, France) from 2010 to 2020; and Jules Bordet Institute (Brussels, Belgium) from 2015 to 2020. Model performance was characterised by area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), calibration, and net benefit. SEPERA was compared against contemporary nomograms (ie, Sayyid nomogram, Soeterik nomogram [non-MRI and MRI]), as well as a separate logistic regression model using the same variables included in SEPERA. An algorithmic audit was performed to assess model bias and identify common patient characteristics among predictive errors.FindingsOverall, 2468 patients comprising 4936 cases (ie, prostatic lobes) were included in this study. SEPERA was well calibrated and had the best performance across all validation cohorts (pooled AUROC of 0·77 [95% CI 0·75–0·78] and pooled AUPRC of 0·61 [0·58–0·63]). In patients with pathological ssEPE despite benign ipsilateral biopsies, SEPERA correctly predicted ssEPE in 72 (68%) of 106 cases compared with the other models (47 [44%] in the logistic regression model, none in the Sayyid model, 13 [12%] in the Soeterik non-MRI model, and five [5%] in the Soeterik MRI model). SEPERA had higher net benefit than the other models to predict ssEPE, enabling more patients to safely undergo nerve-sparing. In the algorithmic audit, no evidence of model bias was observed, with no significant difference in AUROC when stratified by race, biopsy year, age, biopsy type (systematic only vs systematic and MRI-targeted biopsy), biopsy location (academic vs community), and D'Amico risk group. According to the audit, the most common errors were false positives, particularly for older patients with high-risk disease. No aggressive tumours (ie, grade >2 or high-risk disease) were found among false negatives.InterpretationWe demonstrated the accuracy, safety, and generalisability of using SEPERA to personalise nerve-sparing approaches during radical prostatectomy.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yohu应助ZL采纳,获得10
刚刚
刚刚
1秒前
玉米发布了新的文献求助20
1秒前
sarah完成签到,获得积分10
1秒前
搜集达人应助羊觅夏采纳,获得20
3秒前
KZ完成签到,获得积分10
4秒前
小王哪跑完成签到,获得积分10
5秒前
Nana发布了新的文献求助10
5秒前
zzzhang完成签到,获得积分10
5秒前
6秒前
一杯奶茶完成签到,获得积分10
6秒前
chaojia_niu完成签到,获得积分10
7秒前
疯狂的大山关注了科研通微信公众号
7秒前
坚强依波发布了新的文献求助30
8秒前
科研通AI2S应助陈晨采纳,获得10
9秒前
9秒前
科目三应助Yue采纳,获得10
9秒前
iconcrete完成签到,获得积分0
10秒前
11秒前
狗不理完成签到,获得积分10
11秒前
12秒前
研友_VZG7GZ应助CHH采纳,获得10
12秒前
乘风破浪发布了新的文献求助10
13秒前
Yziii应助蓝色海采纳,获得20
13秒前
12345完成签到,获得积分10
13秒前
tzj关闭了tzj文献求助
14秒前
14秒前
Laisy完成签到,获得积分10
15秒前
整齐的大开应助张硕士采纳,获得10
16秒前
16秒前
17秒前
坚强依波发布了新的文献求助10
17秒前
18秒前
charih发布了新的文献求助10
18秒前
18秒前
19秒前
爆米花应助黎小静采纳,获得10
19秒前
tumbler完成签到 ,获得积分10
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547