Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts

日照时长 均方误差 气象学 期限(时间) 环境科学 相关系数 决定系数 数学 统计 大气科学 地理 相对湿度 物理 量子力学
作者
Shujing Qin,Zhihe Liu,Rangjian Qiu,Yufeng Luo,Jingwei Wu,Baozhong Zhang,Lifeng Wu,Evgenios Agathokleous
出处
期刊:Applied Energy [Elsevier]
卷期号:343: 121205-121205 被引量:4
标识
DOI:10.1016/j.apenergy.2023.121205
摘要

Accurate forecasting of daily global solar radiation (Rs) is important for photovoltaic power and other sectors. Numerical models coupled with public weather forecasts information is a feasible method to predict short–term daily Rs. Here, we propose a novel sunshine duration converting method (n_new) based on forecasted air temperature and weather types data, which we validated using measurements from 86 radiation stations. A widely-used, generalized sunshine–based Rs model (Rs_n) was then coupled with the n_new method (Rs_n new) for forecasting daily Rs. This was further compared to Rs_n incorporated with the common sunshine duration converting method (n_com) using only weather types data (Rs_n com) and a recently developed generalized temperature–based model (Rs_T). The results indicated that the n_new method produced better estimates than the n_com method, as indicated by increased mean correlation coefficient (R; 13.0%–24.5%) and index of agreement (dIA; 2.9%–9.5%) and decreased mean root mean squared error (RMSE; 12.8%–14.8%) for the 1–7 days lead time over 86 sites. The Rs_n new model improved the accuracy for 98% of sites when compared to the Rs_n com model, with mean values of R and dIA increasing by 7.7%–11.0% and 2.1%–4.8% and that of RMSE decreasing by 9.7%–12.5% for the 1–7 days lead time. The results suggest that the Rs_n new model is advantageous in short–term forecasts. The Rs_n new model ranked first for 52.3%–74.4% of sites for the 1–7 days lead time, followed by the Rs_T model (25.6%–47.7%). Moreover, there was generally a better performance for the Rs_n new model to forecast daily Rs at a longer lead time. Therefore, the Rs_n new model using weather forecasts information is highly recommended to forecast short–term daily Rs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敖江风云完成签到,获得积分10
1秒前
安诺完成签到,获得积分10
2秒前
跳跃靖发布了新的文献求助30
2秒前
于芋菊发布了新的文献求助10
2秒前
3秒前
Yang应助sophyia采纳,获得10
3秒前
6秒前
踏实的大地完成签到,获得积分10
7秒前
缥缈念云发布了新的文献求助10
7秒前
wang完成签到,获得积分10
8秒前
xiong发布了新的文献求助10
9秒前
11秒前
hhh完成签到,获得积分10
11秒前
小鱼仔完成签到,获得积分10
13秒前
善良吐司完成签到,获得积分10
13秒前
14秒前
jxwe完成签到 ,获得积分10
14秒前
14秒前
16秒前
18秒前
18秒前
可爱玫瑰完成签到,获得积分10
19秒前
20秒前
刘zy发布了新的文献求助10
21秒前
VirgoYn完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
小马同学完成签到,获得积分20
27秒前
尹姝应助坚定南霜采纳,获得10
28秒前
年轻的白莲完成签到,获得积分20
29秒前
锦鲤完成签到 ,获得积分10
29秒前
明亮中心发布了新的文献求助10
29秒前
lkouj完成签到,获得积分10
31秒前
31秒前
32秒前
35秒前
刻苦的晓蕾完成签到,获得积分10
35秒前
星辰大海应助yanxun采纳,获得10
36秒前
37秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166387
求助须知:如何正确求助?哪些是违规求助? 2817875
关于积分的说明 7917935
捐赠科研通 2477361
什么是DOI,文献DOI怎么找? 1319594
科研通“疑难数据库(出版商)”最低求助积分说明 632536
版权声明 602415