Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes

医学 二尖瓣反流 聚类分析 内科学 心脏病学 反流(循环) 人工智能 计算机科学
作者
Jérémy Bernard,Naveena Yanamala,Rohan Shah,Karthik Seetharam,Alexandre Altes,Marie-Ève Dupuis,Oumhani Toubal,Haïfa Mahjoub,Hélène Dumortier,Jean Tartar,Erwan Salaün,Kim O’Connor,Mathieu Bernier,Jonathan Beaudoin,Nancy Côté,André Vincentelli,Florent Leven,Sylvestre Maréchaux,Philippe Pîbarot,Partho P. Sengupta
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:16 (10): 1253-1267 被引量:8
标识
DOI:10.1016/j.jcmg.2023.02.016
摘要

Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缺月挂疏桐完成签到,获得积分10
刚刚
刚刚
英姑应助xhddysh采纳,获得10
刚刚
现代菠萝完成签到,获得积分20
1秒前
魏嘉轩完成签到 ,获得积分10
1秒前
wjw发布了新的文献求助10
1秒前
2秒前
上官若男应助novi采纳,获得30
2秒前
机灵的鬼神完成签到 ,获得积分10
2秒前
Jasper应助住在天上很开心采纳,获得10
2秒前
英姑应助许进文采纳,获得10
3秒前
3秒前
3秒前
kyokukou发布了新的文献求助10
3秒前
dudududu完成签到,获得积分10
3秒前
kuiuLinvk完成签到,获得积分10
4秒前
4秒前
奥利给完成签到,获得积分10
4秒前
叶宇豪发布了新的文献求助10
5秒前
小天才发布了新的文献求助10
5秒前
6秒前
真知棒发布了新的文献求助10
6秒前
6秒前
阿布完成签到,获得积分10
6秒前
PHHHH发布了新的文献求助10
7秒前
研友_Zlem38完成签到,获得积分10
7秒前
02ZT完成签到,获得积分10
8秒前
hank完成签到,获得积分10
8秒前
9秒前
10秒前
ZMJ完成签到,获得积分10
11秒前
ColinWine发布了新的文献求助10
11秒前
12秒前
12秒前
善学以致用应助秋秋秋采纳,获得10
12秒前
zzz627完成签到,获得积分10
13秒前
小luc完成签到,获得积分10
13秒前
14秒前
Lucas应助真知棒采纳,获得10
14秒前
汉堡包应助丁言笑采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375