Forecasting Traffic Speed during Daytime from Google Street View Images using Deep Learning

计算机科学 卷积神经网络 深度学习 交通速度 流量(计算机网络) 人工智能 机器学习 比例(比率) 街道网 运输工程 数据挖掘 地理 工程类 地图学 计算机安全
作者
Junfeng Jiao,Huihai Wang
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (12): 743-753 被引量:5
标识
DOI:10.1177/03611981231169531
摘要

Traffic forecasting plays an important role in urban planning. Deep learning methods outperform traditional traffic flow forecasting models because of their ability to capture spatiotemporal characteristics of traffic conditions. However, these methods require high-quality historical traffic data, which can be both difficult to acquire and non-comprehensive, making it hard to predict traffic flows at the city scale. To resolve this problem, we implemented a deep learning method, SceneGCN, to forecast traffic speed at the city scale. The model involves two steps: firstly, scene features are extracted from Google Street View (GSV) images for each road segment using pretrained Resnet18 models. Then, the extracted features are entered into a graph convolutional neural network to predict traffic speed at different hours of the day. Our results show that the accuracy of the model can reach up to 86.5% and the Resnet18 model pretrained by Places365 is the best choice to extract scene features for traffic forecasting tasks. Finally, we conclude that the proposed model can predict traffic speed efficiently at the city scale and GSV images have the potential to capture information about human activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
youjun发布了新的文献求助10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
yy发布了新的文献求助10
1秒前
Jangz完成签到,获得积分10
2秒前
2秒前
meiyu发布了新的文献求助10
2秒前
雪梨发布了新的文献求助10
2秒前
果果发布了新的文献求助10
2秒前
没有昵称完成签到,获得积分10
2秒前
跳跃的幻露完成签到,获得积分10
2秒前
ccalvintan发布了新的文献求助10
3秒前
Akim应助鑫鑫采纳,获得10
3秒前
yhz123完成签到 ,获得积分10
3秒前
3秒前
嵇灵竹完成签到 ,获得积分10
3秒前
啦啦啦完成签到,获得积分20
3秒前
3秒前
4秒前
小子弹发布了新的文献求助10
4秒前
萌妹完成签到,获得积分10
4秒前
4秒前
AAAAA完成签到 ,获得积分10
6秒前
6秒前
科目三应助菜菜采纳,获得10
6秒前
江峰发布了新的文献求助10
7秒前
LAMAMAX发布了新的文献求助20
7秒前
McGrady应助迷人秋烟采纳,获得1000
7秒前
斯文败类应助高挑的宛海采纳,获得10
8秒前
迷失沉寂完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227