Forecasting Traffic Speed during Daytime from Google Street View Images using Deep Learning

计算机科学 卷积神经网络 深度学习 交通速度 流量(计算机网络) 人工智能 机器学习 比例(比率) 街道网 运输工程 数据挖掘 地理 工程类 地图学 计算机安全
作者
Junfeng Jiao,Huihai Wang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (12): 743-753 被引量:5
标识
DOI:10.1177/03611981231169531
摘要

Traffic forecasting plays an important role in urban planning. Deep learning methods outperform traditional traffic flow forecasting models because of their ability to capture spatiotemporal characteristics of traffic conditions. However, these methods require high-quality historical traffic data, which can be both difficult to acquire and non-comprehensive, making it hard to predict traffic flows at the city scale. To resolve this problem, we implemented a deep learning method, SceneGCN, to forecast traffic speed at the city scale. The model involves two steps: firstly, scene features are extracted from Google Street View (GSV) images for each road segment using pretrained Resnet18 models. Then, the extracted features are entered into a graph convolutional neural network to predict traffic speed at different hours of the day. Our results show that the accuracy of the model can reach up to 86.5% and the Resnet18 model pretrained by Places365 is the best choice to extract scene features for traffic forecasting tasks. Finally, we conclude that the proposed model can predict traffic speed efficiently at the city scale and GSV images have the potential to capture information about human activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHEN发布了新的文献求助10
1秒前
艺玲发布了新的文献求助10
2秒前
dddddddio完成签到 ,获得积分10
2秒前
2秒前
gaos发布了新的文献求助10
2秒前
坦率的可仁完成签到,获得积分10
3秒前
司徒迎曼完成签到,获得积分10
3秒前
烟花应助激情的一斩采纳,获得10
3秒前
天天快乐应助11采纳,获得10
4秒前
36456657应助八九采纳,获得50
4秒前
潦草完成签到,获得积分20
4秒前
华仔应助科研通管家采纳,获得10
4秒前
freesialll完成签到 ,获得积分10
4秒前
深情安青应助科研通管家采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得20
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
摇摇晃晃完成签到 ,获得积分10
5秒前
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
贪玩手链应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
李健的小迷弟应助liyi采纳,获得10
6秒前
华仔应助科研通管家采纳,获得20
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得20
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740