Forecasting Traffic Speed during Daytime from Google Street View Images using Deep Learning

计算机科学 卷积神经网络 深度学习 交通速度 流量(计算机网络) 人工智能 机器学习 比例(比率) 街道网 运输工程 数据挖掘 地理 工程类 地图学 计算机安全
作者
Junfeng Jiao,Huihai Wang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (12): 743-753 被引量:5
标识
DOI:10.1177/03611981231169531
摘要

Traffic forecasting plays an important role in urban planning. Deep learning methods outperform traditional traffic flow forecasting models because of their ability to capture spatiotemporal characteristics of traffic conditions. However, these methods require high-quality historical traffic data, which can be both difficult to acquire and non-comprehensive, making it hard to predict traffic flows at the city scale. To resolve this problem, we implemented a deep learning method, SceneGCN, to forecast traffic speed at the city scale. The model involves two steps: firstly, scene features are extracted from Google Street View (GSV) images for each road segment using pretrained Resnet18 models. Then, the extracted features are entered into a graph convolutional neural network to predict traffic speed at different hours of the day. Our results show that the accuracy of the model can reach up to 86.5% and the Resnet18 model pretrained by Places365 is the best choice to extract scene features for traffic forecasting tasks. Finally, we conclude that the proposed model can predict traffic speed efficiently at the city scale and GSV images have the potential to capture information about human activities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助Ooo采纳,获得10
刚刚
cency完成签到,获得积分10
1秒前
牛豁发布了新的文献求助10
1秒前
sure发布了新的文献求助10
1秒前
赘婿应助星回采纳,获得10
2秒前
nn应助xdx采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
cency发布了新的文献求助10
4秒前
汉堡包应助300采纳,获得10
4秒前
jing发布了新的文献求助10
4秒前
Ava应助hgzz采纳,获得10
5秒前
小解完成签到 ,获得积分10
5秒前
6秒前
李丹完成签到,获得积分10
8秒前
daltonz完成签到,获得积分10
8秒前
可爱半凡发布了新的文献求助10
9秒前
一块五发布了新的文献求助30
9秒前
10秒前
所所应助winnie采纳,获得10
10秒前
10秒前
11秒前
遗世角落发布了新的文献求助10
11秒前
听风发布了新的文献求助10
12秒前
12秒前
12秒前
牛豁完成签到,获得积分10
14秒前
14秒前
linjunqi发布了新的文献求助10
14秒前
悬铃木发布了新的文献求助10
15秒前
15秒前
16秒前
爆米花应助Ooo采纳,获得10
17秒前
17秒前
Ning发布了新的文献求助10
17秒前
18秒前
hgzz发布了新的文献求助10
18秒前
爆米花应助听风采纳,获得10
18秒前
隐形曼青应助从容的翼采纳,获得30
19秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584225
求助须知:如何正确求助?哪些是违规求助? 4667748
关于积分的说明 14769485
捐赠科研通 4610238
什么是DOI,文献DOI怎么找? 2529727
邀请新用户注册赠送积分活动 1498707
关于科研通互助平台的介绍 1467270