能量转换效率
钙钛矿(结构)
材料科学
共轭体系
价(化学)
化学工程
电子迁移率
光电子学
化学
聚合物
结晶学
有机化学
复合材料
工程类
作者
Xuepeng Liu,Bin Ding,Mingyuan Han,Zhenhai Yang,Jianlin Chen,Pengju Shi,Xiangying Xue,Rahim Ghadari,Xianfu Zhang,Rui Wang,Keith G. Brooks,Tao Li,Sachin Kinge,Songyuan Dai,Jiang Sheng,Paul J. Dyson,Mohammad Khaja Nazeeruddin,Yong Ding
标识
DOI:10.1002/ange.202304350
摘要
Abstract Hole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl)‐amine‐9,9′‐spirobifluorene (spiro‐OMeTAD, termed “Spiro”) is the most successful HTM used in PSCs, but its versatility is imperfect. To improve its performance, we developed a novel spiro‐type HTM (termed “DP”) by substituting four anisole units on Spiro with 4‐methoxybiphenyl moieties. By extending the π‐conjugation of Spiro in this way, the HOMO level of the HTM matches well with the perovskite valence band, enhancing hole mobility and increasing the glass transition temperature. DP‐based PSC achieves high power conversion efficiencies (PCEs) of 25.24 % for small‐area (0.06 cm 2 ) devices and 21.86 % for modules (designated area of 27.56 cm 2 ), along with the certified efficiency of 21.78 % on a designated area of 27.86 cm 2 . The encapsulated DP‐based devices maintain 95.1 % of the initial performance under ISOS‐L‐1 conditions after 2560 hours and 87 % at the ISOS‐L‐3 conditions over 600 hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI