Regulation of precipitation behavior among T1, S', and θ' phases in Al–Cu–Li-(Mg–Ag) alloys by optimizing Ag/Mg ratios

材料科学 降水 沉淀硬化 冶金 体积分数 延展性(地球科学) 穿晶断裂 晶间断裂 晶界 合金 微观结构 晶间腐蚀 复合材料 蠕动 物理 气象学
作者
Xuanxi Xu,Guohua Wu,Liang Zhang,Xin Tong,Fangzhou Qi,Ya-Fang Guo,Liangbin Li,Xunman Xiong,Cunlong Wang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:876: 145158-145158 被引量:4
标识
DOI:10.1016/j.msea.2023.145158
摘要

In third-generation Al–Cu–Li alloys, T1, S', and θ' precipitates are the primary strengthening phases, and the strength-ductility synergy of the alloys depends strongly on their precipitation behavior. This study aimed to regulate the precipitation behavior among these precipitates by optimizing Ag/Mg ratio in Al–Cu–Li alloys, and its influence on mechanical properties and fracture mechanism was investigated. To this end, four alloys were designed with a total content of 1.1 wt% of Ag and Mg, and an Ag/Mg ratio ranging from 0.24 to 5.63. The results shows that an increase in the Ag/Mg ratio dramatically accelerated the ageing process and shortened the peak-ageing time. At 150 °C, the precipitation sequence of alloys with an Ag/Mg ratio below 0.95 was SSS→GPB zone +δ′/β'→S'+T1, which transformed into SSS→GP zone +δ′/β'→θ'+T1 when the Ag/Mg ratio was above 1.87. The T1, S', and θ' precipitates coexisted and were dispersedly distributed among studied alloys with an Ag/Mg ratio ranging from 0.95 to 1.87. An Ag/Mg ratio of 1.87 resulted in the fastest ageing hardening response and the highest strength (YS = 705 MPa, UTS = 717 MPa) because of the highest volume fraction of T1 precipitates. Moreover, the fracture mode changed from transgranular fracture to intergranular fracture with increasing Ag/Mg ratio due to the difference in distribution and number density of these precipitates between the matrix and grain boundary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助平常的毛豆采纳,获得10
1秒前
SciGPT应助paul采纳,获得10
4秒前
6秒前
英姑应助书生采纳,获得10
7秒前
科研钓鱼佬完成签到,获得积分10
8秒前
10秒前
petrichor应助C_Cppp采纳,获得10
10秒前
nan完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
勤恳的雨文完成签到,获得积分10
11秒前
木森ab发布了新的文献求助10
12秒前
paul完成签到,获得积分10
12秒前
小鞋完成签到,获得积分10
13秒前
开心青旋发布了新的文献求助10
13秒前
fztnh发布了新的文献求助10
13秒前
无名花生完成签到 ,获得积分10
13秒前
15秒前
16秒前
16秒前
杜若完成签到,获得积分10
16秒前
16秒前
木森ab完成签到,获得积分20
18秒前
paul发布了新的文献求助10
19秒前
20秒前
MEME发布了新的文献求助10
23秒前
23秒前
情怀应助LSH970829采纳,获得10
23秒前
CHINA_C13发布了新的文献求助10
26秒前
Mars发布了新的文献求助10
27秒前
哈哈哈完成签到,获得积分10
27秒前
玛卡巴卡应助平常的毛豆采纳,获得100
28秒前
默默的青旋完成签到,获得积分10
29秒前
32秒前
搜集达人应助淡淡采白采纳,获得10
32秒前
高高代珊完成签到 ,获得积分10
33秒前
gmc发布了新的文献求助10
34秒前
34秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824