Dual-hard phase structures make mechanically tough and autonomous self-healable polyurethane elastomers

弹性体 材料科学 聚氨酯 复合材料 对偶(语法数字) 相(物质) 高分子科学 化学 文学类 艺术 有机化学
作者
Xiankun Wu,Jiale Zhang,Haonan Li,Huihui Gao,Mang Wu,Zhongkai Wang,Zhong Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140268-140268 被引量:58
标识
DOI:10.1016/j.cej.2022.140268
摘要

• A novel strong autonomic self-healing elastomer is designed. • Dual-hard phase structure is realized by introducing dangling fatty acid chains. • Plasticizing segments with hard crystalline domains to address this dilemma. • Self-healable elastomer behaves simultaneously high strength and great toughness. • Auto-repairing conducting devices are demonstrated using developed elastomer. It is a key challenge to combine high mechanical strength and excellent autonomous self-healing properties in one elastomer to match the requirements of commercial applications. Chemical cross-linking or crystalline domains can afford high mechanical strength but are often based on the cost of losing autonomous self-healing performance. To address this dilemma, a strategy involving dual hard phase structures was developed to reinforce self-healing polyurethane elastomers, by introducing plant oil-derived fatty acid side chains into the hard segments. The dangling fatty acid chains not only allow segmental motion of the hard domains but also suppress the crystallization within polyurethane soft segments. The synergistic dual-hard phase structure and dynamic chain motion are responsible for outstanding mechanical properties (tensile strength to 21.8 MPa and toughness of 131.6 MJ m -3 ) and autonomous self-healing ability (∼100% healing efficiency). Furthermore, a versatile mechanical robust flexible conductor is conveniently constructed with an auto-repair capability at ambient conditions. This work represents a molecular design paradigm of simultaneously integrating balanced mechanical strength, durability, and self-healing ability for high-performance elastomers that can find applications such as skin-inspired wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ok123完成签到 ,获得积分10
2秒前
酷酷的碳完成签到 ,获得积分10
2秒前
闵不悔完成签到,获得积分10
3秒前
...关闭了...文献求助
4秒前
麻黄阿葵完成签到,获得积分10
4秒前
jiangjiang完成签到 ,获得积分10
5秒前
Even9完成签到,获得积分10
6秒前
CipherSage应助cmh采纳,获得10
6秒前
简单问儿完成签到 ,获得积分10
6秒前
ATOM发布了新的文献求助10
7秒前
炙热的若枫完成签到 ,获得积分10
7秒前
Java完成签到,获得积分10
8秒前
阿成完成签到,获得积分10
10秒前
妮妮完成签到 ,获得积分10
15秒前
15秒前
jbear完成签到 ,获得积分10
18秒前
道交法完成签到,获得积分10
18秒前
小高同学完成签到,获得积分10
20秒前
cmh发布了新的文献求助10
20秒前
圣人海完成签到,获得积分10
21秒前
26秒前
离子电池完成签到,获得积分10
26秒前
斯文败类应助cmh采纳,获得10
30秒前
Yancent完成签到,获得积分10
41秒前
火星上的泡芙完成签到,获得积分10
41秒前
peterlzb1234567完成签到,获得积分10
42秒前
ttt完成签到,获得积分10
44秒前
Albee0907完成签到,获得积分10
45秒前
蝃蝀完成签到,获得积分10
47秒前
小蘑菇噢噢噢完成签到,获得积分10
48秒前
梁嘉琦完成签到,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
深情安青应助科研通管家采纳,获得20
49秒前
49秒前
三石完成签到,获得积分10
53秒前
orixero应助chen采纳,获得10
53秒前
11完成签到,获得积分10
53秒前
luoyukejing完成签到,获得积分10
55秒前
rgjipeng完成签到,获得积分10
55秒前
姜且完成签到 ,获得积分10
55秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311334
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516951
捐赠科研通 2619468
什么是DOI,文献DOI怎么找? 1432315
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856