Quantitative Data-Independent Acquisition Mass Spectrometry Proteomics and Weighted Correlation Network Analysis of Plasma Samples for the Discovery of Chronic Kidney Disease-Specific Atherosclerosis Risk Factors

肾脏疾病 肾功能 内科学 冠状动脉粥样硬化 生物 蛋白质组学 糖尿病 疾病 生物信息学 医学 冠心病 内分泌学 生物化学 基因
作者
Dongjun Dai,Zhiwei Cheng,Shuo Feng,Zhengbin Zhu,Jiwei Yu,Wenli Zhang,Hui Lü,Ruiyan Zhang,Jinzhou Zhu
出处
期刊:DNA and Cell Biology [Mary Ann Liebert]
卷期号:41 (11): 966-980
标识
DOI:10.1089/dna.2022.0200
摘要

Chronic kidney disease (CKD) accelerates atherosclerosis. The mechanism of CKD-related atherosclerosis is complex, and CKD-specific risk factors may contribute to this process in addition to traditional risk factors such as hypertension, diabetes, and hypercholesterolemia. In the present study, to discover CKD-specific atherosclerosis risk factors, a total of 62 patients with different stages of kidney function were enrolled. All patients underwent coronary angiographies and the severity of coronary atherosclerosis was defined by the SYNTAX score. Patients were divided into different groups according to their kidney function levels and coronary atherosclerosis severity. Data-independent acquisition mass spectrometry was used to identify differentially expressed proteins (DEPs) in the plasma samples, and weighted correlation network analysis (WGCNA) was employed to identify significant protein modules and hub proteins related to CKD-specific atherosclerosis. The results showed that 10 DEPs associated with atherosclerosis were found in the comparative groups with modest and severe CKD. Through WGCNA, 1768 proteins were identified and 8 protein modules were established. Enrichment analyses of protein modules revealed functional clusters mainly associated with inflammation and the complement and coagulation cascade as atherosclerosis developed under CKD conditions. The results may help to better understand the mechanisms of CKD-related atherosclerosis and guide future research on developing treatments for CKD-related atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小杨快看呀完成签到,获得积分10
1秒前
Orange应助wangg采纳,获得10
1秒前
MRCHONG完成签到,获得积分10
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
poletar完成签到,获得积分10
1秒前
柠檬发布了新的文献求助10
1秒前
沉静的夜玉完成签到,获得积分10
1秒前
gaos发布了新的文献求助10
1秒前
MADKAI发布了新的文献求助10
2秒前
搬砖美少女完成签到,获得积分10
2秒前
2秒前
风起完成签到 ,获得积分10
2秒前
fifteen应助雪123采纳,获得10
2秒前
2秒前
香蕉觅云应助开朗熊猫采纳,获得10
3秒前
吱嗷赵发布了新的文献求助10
3秒前
zxyhhh完成签到 ,获得积分10
3秒前
霸气梦菲完成签到 ,获得积分10
3秒前
CodeCraft应助hhh采纳,获得10
3秒前
Zhaorf发布了新的文献求助10
4秒前
MRCHONG发布了新的文献求助10
4秒前
4秒前
Akim应助liuchao采纳,获得10
4秒前
动听的人英完成签到 ,获得积分10
4秒前
5秒前
coconut完成签到 ,获得积分10
5秒前
5秒前
脑洞疼应助Ll采纳,获得10
5秒前
5秒前
6秒前
Anne完成签到,获得积分10
6秒前
老迟到的凝丝完成签到,获得积分10
6秒前
金鸡奖发布了新的文献求助10
6秒前
邓邓邓妮妮子完成签到,获得积分10
6秒前
哇哈哈发布了新的文献求助10
6秒前
6秒前
andyxrz发布了新的文献求助30
7秒前
酒尚温完成签到,获得积分10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672