Non-Destructive Extraction and Separation of Nano- and Microplastics from Environmental Samples by Density Gradient Ultracentrifugation

化学 微塑料 萃取(化学) 超离心机 色谱法 分析超速离心 纳米- 分离法 环境化学 化学工程 工程类
作者
Siyuan Jing,Yu Huang,Yinjuan Chen,Xueqing He,Zhong Chen,Xingyu Lu,Minghuo Wu,Thomas Cherico Wanger
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (44): 15280-15287 被引量:26
标识
DOI:10.1021/acs.analchem.2c02543
摘要

Nano-/microplastics (NMPs, particle diameter < 5 mm) are widespread emerging pollutants causing diverse impacts on organisms due to their sizes, shapes, and chemical properties. Despite the fast increase in NMP research, an effective method to separate and identify NMP types from environmental samples is still lacking. Here, we developed a simple and effective approach for the non-destructive extraction and separation of various types of NMPs from environmental samples by density gradient ultracentrifugation (DGU). For the first time, DGU was capable to separate various NMPs from the complex matrix with high selectivity (100%), purity (93%), and applicability. Through a gradually changing density of the density gradient medium by changing the concentrations or volumes of CsCl/water solution (from 0.00065 to 0.01989 g cm–3 mm–1), various NMPs (with particle sizes as little as 50 nm) could be extracted and separated from soil samples with high recovery (78.5–96.0%). We confirmed the effectiveness and compatibility of DGU through a correct identification of all types of NMPs separated from artificial soil samples with Raman spectroscopy, simultaneous thermal analysis (STA), and pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS). DGU is compatible with all analytical processes compared to other existing methods with much less sample pretreatment time (0.5 h). Overall, DGU is an effective and cheap method (2.2 USD/sample) to separate NMPs from environmental samples such as soil and water and, hence, can facilitate research on NMPs related to terrestrial and marine environments as well as human health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助陈陈采纳,获得10
2秒前
缓慢如南应助学习中采纳,获得10
2秒前
科研通AI5应助li采纳,获得10
2秒前
相顾无言完成签到,获得积分10
3秒前
4秒前
4秒前
zyy发布了新的文献求助10
4秒前
5秒前
5秒前
喜悦惜寒发布了新的文献求助10
6秒前
传奇3应助yrt采纳,获得10
7秒前
xpy0227完成签到,获得积分10
7秒前
7秒前
10秒前
搜集达人应助俺的步行街采纳,获得30
10秒前
磬筱发布了新的文献求助10
10秒前
DLL完成签到 ,获得积分10
10秒前
吱吱吱完成签到 ,获得积分10
11秒前
辛勤的乌完成签到,获得积分10
11秒前
wang发布了新的文献求助10
12秒前
niuniu完成签到,获得积分10
13秒前
HQQ完成签到,获得积分20
13秒前
YMH完成签到 ,获得积分10
14秒前
喜悦惜寒完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
yitata完成签到,获得积分10
17秒前
可爱的函函应助NZH采纳,获得10
17秒前
Ava应助罗汉采纳,获得10
18秒前
狐八道发布了新的文献求助10
20秒前
21秒前
21秒前
尼斯卡发布了新的文献求助10
23秒前
li发布了新的文献求助10
23秒前
bkagyin应助科研通管家采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331