Segment alignment based cross-subject motor imagery classification under fading data

衰退 计算机科学 运动表象 人工智能 机器学习 个性化 脑-机接口 模式识别(心理学) 支持向量机 数据挖掘 算法 脑电图 心理学 解码方法 精神科 万维网
作者
Zitong Wan,Rui Yang,Mengjie Huang,Fuad E. Alsaadi,Muntasir Sheikh,Zidong Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106267-106267 被引量:4
标识
DOI:10.1016/j.compbiomed.2022.106267
摘要

Motor imagery (MI) aims to use brain imagination without actual body activities to support motor learning, and machine learning algorithms such as common spatial patterns (CSP) are proven effective in the analysis of MI signals. In the conventional machine learning-based approaches, there are two main difficulties in feature extraction and recognition of MI signals: high personalization and data fading. The high personalization problem is due to the multi-subject nature when collecting MI signals, and the data fading problem as a recurring issue in MI signal quality is first raised by us but is not widely discussed at present. Aiming to solve the above two mentioned problems, a cross-subject fading data classification approach with segment alignment is proposed to classify the fading data of one single target with the model trained with the normal data of multiple sources in this paper. he effectiveness of proposed method is verified via two experiments: a dataset-based experiment with the dataset from BCI Competition and a lab-based experiment designed and conducted by us. The experimental results obtained from both experiments show that the proposed method can obtain optimal classification performance effectively under different fading levels with data from different subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ee完成签到,获得积分10
1秒前
2秒前
2秒前
Akim应助顺顺顺采纳,获得10
3秒前
ponny2001发布了新的文献求助10
4秒前
4秒前
慕青应助高大雁兰采纳,获得10
5秒前
5秒前
Ansels完成签到,获得积分10
6秒前
天天快乐应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
丰知然应助科研通管家采纳,获得20
8秒前
Hello应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
keyanxiaosong发布了新的文献求助10
8秒前
李健应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
JIANG应助科研通管家采纳,获得20
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
SweepingMonk应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
充电宝应助伶俐惜萱采纳,获得10
10秒前
YifanWang应助无私诗柳采纳,获得10
10秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461701
求助须知:如何正确求助?哪些是违规求助? 3055391
关于积分的说明 9047754
捐赠科研通 2745178
什么是DOI,文献DOI怎么找? 1506027
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695411