Artificial intelligence for prediction of response to cancer immunotherapy

免疫疗法 人工智能 癌症免疫疗法 癌症 机器学习 精密医学 医学 计算机科学 内科学 病理
作者
Yuhan Yang,Yunuo Zhao,Xici Liu,Juan Huang
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:87: 137-147 被引量:18
标识
DOI:10.1016/j.semcancer.2022.11.008
摘要

Artificial intelligence (AI) indicates the application of machines to imitate intelligent behaviors for solving complex tasks with minimal human intervention, including machine learning and deep learning. The use of AI in medicine improves health-care systems in multiple areas such as diagnostic confirmation, risk stratification, analysis, prognosis prediction, treatment surveillance, and virtual health support, which has considerable potential to revolutionize and reshape medicine. In terms of immunotherapy, AI has been applied to unlock underlying immune signatures to associate with responses to immunotherapy indirectly as well as predict responses to immunotherapy responses directly. The AI-based analysis of high-throughput sequences and medical images can provide useful information for management of cancer immunotherapy considering the excellent abilities in selecting appropriate subjects, improving therapeutic regimens, and predicting individualized prognosis. In present review, we aim to evaluate a broad framework about AI-based computational approaches for prediction of response to cancer immunotherapy on both indirect and direct manners. Furthermore, we summarize our perspectives about challenges and opportunities of further AI applications on cancer immunotherapy relating to clinical practicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助正直的博采纳,获得10
刚刚
刚刚
时崎狂三完成签到,获得积分10
1秒前
渡花完成签到,获得积分10
1秒前
Raymen发布了新的文献求助10
2秒前
呀呀呀完成签到,获得积分10
2秒前
DDAIDN发布了新的文献求助50
2秒前
2秒前
3秒前
4秒前
lg16完成签到,获得积分10
4秒前
可爱的函函应助iFreedom采纳,获得10
5秒前
是咸鱼呀完成签到,获得积分10
5秒前
5秒前
6秒前
Polymer72应助执执采纳,获得10
7秒前
severus完成签到 ,获得积分10
7秒前
淡然的大碗完成签到,获得积分10
7秒前
胡大侠完成签到 ,获得积分10
8秒前
婷婷发布了新的文献求助10
8秒前
8秒前
阳光荠完成签到,获得积分10
9秒前
明理采珊发布了新的文献求助10
9秒前
渡花发布了新的文献求助10
9秒前
倪小呆发布了新的文献求助10
11秒前
胡大侠关注了科研通微信公众号
11秒前
邓佳鑫Alan应助aaaaaa采纳,获得10
12秒前
12秒前
14秒前
果汁完成签到 ,获得积分10
15秒前
搜集达人应助苗条的冰蓝采纳,获得10
15秒前
煎蛋西西完成签到 ,获得积分10
16秒前
可爱的函函应助tq采纳,获得10
17秒前
DayFu完成签到,获得积分10
17秒前
18秒前
香蕉觅云应助亮仔采纳,获得10
18秒前
18秒前
123456789完成签到,获得积分20
19秒前
nihao发布了新的文献求助10
19秒前
20秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339442
求助须知:如何正确求助?哪些是违规求助? 2967328
关于积分的说明 8629617
捐赠科研通 2646841
什么是DOI,文献DOI怎么找? 1449385
科研通“疑难数据库(出版商)”最低求助积分说明 671382
邀请新用户注册赠送积分活动 660253