Prognostic model for prostate cancer based on glycolysis-related genes and non-negative matrix factorization analysis

比例危险模型 非负矩阵分解 基因 计算生物学 列线图 生存分析 生物 肿瘤科 癌症研究 医学 矩阵分解 内科学 遗传学 量子力学 物理 特征向量
作者
ZECHAO LU,Fucai Tang,Haobin Zhou,ZEGUANG LU,WANYAN CAI,JIAHAO ZHANG,ZHICHENG TANG,Yongchang Lai,Zhaohui He
出处
期刊:Biocell 卷期号:47 (2): 339-350
标识
DOI:10.32604/biocell.2023.023750
摘要

Background: Establishing an appropriate prognostic model for PCa is essential for its effective treatment. Glycolysis is a vital energy-harvesting mechanism for tumors. Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential. Methods: First, gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB). Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained, which were used in non-negative matrix factorization (NMF) to identify clusters. The correlation between clusters and clinical features was discussed, and the differentially expressed genes (DEGs) between the two clusters were investigated. Based on the DEGs, we investigated the biological differences between clusters, including immune cell infiltration, mutation, tumor immune dysfunction and exclusion, immune function, and checkpoint genes. To establish the prognostic model, the genes were filtered based on univariable Cox regression, LASSO, and multivariable Cox regression. Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model. A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting. Result: The genes obtained from MSigDB were enriched in glycolysis functions. Two clusters were identified by NMF analysis based on 272 glycolysis-related genes, and a prognostic model based on DEGs between the two clusters was finally established. The prognostic model consisted of LAMPS, SPRN, ATOH1, TANC1, ETV1, TDRD1, KLK14, MESP2, POSTN, CRIP2, NAT1, AKR7A3, PODXL, CARTPT, and PCDHGB2. All sample, training, and test cohorts from The Cancer Genome Atlas (TCGA) and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups. The area under the ROC curve showed great performance of this prognostic model. Conclusion: A prognostic model based on glycolysis-related genes was established, with great performance and potential significance to the clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南柯完成签到,获得积分10
1秒前
2秒前
guons发布了新的文献求助10
2秒前
CodeCraft应助dayday采纳,获得10
2秒前
zxy发布了新的文献求助10
2秒前
小苏打完成签到,获得积分10
3秒前
o30发布了新的文献求助10
3秒前
3秒前
听南完成签到,获得积分20
3秒前
充电宝应助WANGSONGLU采纳,获得10
3秒前
4秒前
Jimmybythebay完成签到,获得积分10
4秒前
qqq完成签到,获得积分10
4秒前
4秒前
fanyouxin完成签到,获得积分10
4秒前
赘婿应助tylerconan采纳,获得30
4秒前
HP发布了新的文献求助10
4秒前
forward5完成签到,获得积分10
4秒前
学了个习完成签到,获得积分20
5秒前
5秒前
哇咔咔完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
GE葛完成签到,获得积分10
7秒前
杨烔星发布了新的文献求助30
8秒前
LC完成签到 ,获得积分10
8秒前
SUNSHINE发布了新的文献求助10
8秒前
9秒前
哇咔咔发布了新的文献求助10
9秒前
8464368完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
熊熊熊完成签到,获得积分10
10秒前
斯文败类应助呆呆采纳,获得10
11秒前
12秒前
落寞断缘发布了新的文献求助10
12秒前
徐墨玄发布了新的文献求助10
12秒前
灵巧菠萝发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827