Prognostic model for prostate cancer based on glycolysis-related genes and non-negative matrix factorization analysis

比例危险模型 非负矩阵分解 基因 计算生物学 列线图 生存分析 生物 肿瘤科 癌症研究 医学 矩阵分解 内科学 遗传学 量子力学 物理 特征向量
作者
ZECHAO LU,Fucai Tang,Haobin Zhou,ZEGUANG LU,WANYAN CAI,JIAHAO ZHANG,ZHICHENG TANG,Yongchang Lai,Zhaohui He
出处
期刊:Biocell 卷期号:47 (2): 339-350
标识
DOI:10.32604/biocell.2023.023750
摘要

Background: Establishing an appropriate prognostic model for PCa is essential for its effective treatment. Glycolysis is a vital energy-harvesting mechanism for tumors. Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential. Methods: First, gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB). Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained, which were used in non-negative matrix factorization (NMF) to identify clusters. The correlation between clusters and clinical features was discussed, and the differentially expressed genes (DEGs) between the two clusters were investigated. Based on the DEGs, we investigated the biological differences between clusters, including immune cell infiltration, mutation, tumor immune dysfunction and exclusion, immune function, and checkpoint genes. To establish the prognostic model, the genes were filtered based on univariable Cox regression, LASSO, and multivariable Cox regression. Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model. A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting. Result: The genes obtained from MSigDB were enriched in glycolysis functions. Two clusters were identified by NMF analysis based on 272 glycolysis-related genes, and a prognostic model based on DEGs between the two clusters was finally established. The prognostic model consisted of LAMPS, SPRN, ATOH1, TANC1, ETV1, TDRD1, KLK14, MESP2, POSTN, CRIP2, NAT1, AKR7A3, PODXL, CARTPT, and PCDHGB2. All sample, training, and test cohorts from The Cancer Genome Atlas (TCGA) and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups. The area under the ROC curve showed great performance of this prognostic model. Conclusion: A prognostic model based on glycolysis-related genes was established, with great performance and potential significance to the clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强枫完成签到,获得积分10
1秒前
默默的巧荷完成签到,获得积分10
2秒前
一叶知秋完成签到,获得积分10
3秒前
小杰瑞完成签到,获得积分20
3秒前
希望天下0贩的0应助可以采纳,获得10
3秒前
白色梨花发布了新的文献求助10
3秒前
4秒前
包容柜子发布了新的文献求助10
4秒前
fiell完成签到,获得积分10
5秒前
眼睛大的擎苍给眼睛大的擎苍的求助进行了留言
5秒前
呆萌滑板完成签到 ,获得积分10
6秒前
6秒前
瑶瑶完成签到,获得积分10
7秒前
小猪找库里完成签到,获得积分10
8秒前
zhuzhen007完成签到 ,获得积分10
9秒前
淡定的秀发完成签到,获得积分10
9秒前
xuan完成签到,获得积分10
11秒前
龙华之士发布了新的文献求助10
11秒前
mkb发布了新的文献求助10
11秒前
sl发布了新的文献求助10
12秒前
隐形尔蝶发布了新的文献求助10
13秒前
14秒前
14秒前
仙林AK47完成签到,获得积分10
14秒前
无花果应助包容柜子采纳,获得10
14秒前
chen完成签到,获得积分10
15秒前
iNk应助河丫采纳,获得20
17秒前
小马甲应助清浅采纳,获得10
18秒前
清爽笑翠完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
早岁完成签到,获得积分10
22秒前
mkb关闭了mkb文献求助
22秒前
隐形尔蝶完成签到,获得积分10
23秒前
自由老头发布了新的文献求助100
26秒前
monair完成签到 ,获得积分10
26秒前
lzhgoashore发布了新的文献求助10
27秒前
一朵小鲜花儿完成签到,获得积分10
27秒前
ding应助binglangcha采纳,获得30
27秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048