亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognostic model for prostate cancer based on glycolysis-related genes and non-negative matrix factorization analysis

比例危险模型 非负矩阵分解 基因 计算生物学 列线图 生存分析 生物 肿瘤科 癌症研究 医学 矩阵分解 内科学 遗传学 量子力学 物理 特征向量
作者
ZECHAO LU,Fucai Tang,Haobin Zhou,ZEGUANG LU,WANYAN CAI,JIAHAO ZHANG,ZHICHENG TANG,Yongchang Lai,Zhaohui He
出处
期刊:Biocell 卷期号:47 (2): 339-350
标识
DOI:10.32604/biocell.2023.023750
摘要

Background: Establishing an appropriate prognostic model for PCa is essential for its effective treatment. Glycolysis is a vital energy-harvesting mechanism for tumors. Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential. Methods: First, gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB). Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained, which were used in non-negative matrix factorization (NMF) to identify clusters. The correlation between clusters and clinical features was discussed, and the differentially expressed genes (DEGs) between the two clusters were investigated. Based on the DEGs, we investigated the biological differences between clusters, including immune cell infiltration, mutation, tumor immune dysfunction and exclusion, immune function, and checkpoint genes. To establish the prognostic model, the genes were filtered based on univariable Cox regression, LASSO, and multivariable Cox regression. Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model. A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting. Result: The genes obtained from MSigDB were enriched in glycolysis functions. Two clusters were identified by NMF analysis based on 272 glycolysis-related genes, and a prognostic model based on DEGs between the two clusters was finally established. The prognostic model consisted of LAMPS, SPRN, ATOH1, TANC1, ETV1, TDRD1, KLK14, MESP2, POSTN, CRIP2, NAT1, AKR7A3, PODXL, CARTPT, and PCDHGB2. All sample, training, and test cohorts from The Cancer Genome Atlas (TCGA) and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups. The area under the ROC curve showed great performance of this prognostic model. Conclusion: A prognostic model based on glycolysis-related genes was established, with great performance and potential significance to the clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
38秒前
40秒前
量子星尘发布了新的文献求助10
48秒前
KSung完成签到 ,获得积分10
54秒前
58秒前
临河盗龙发布了新的文献求助30
1分钟前
临河盗龙完成签到,获得积分20
1分钟前
zhanglq完成签到,获得积分10
1分钟前
1分钟前
studystudy完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
自律发布了新的文献求助10
1分钟前
NexusExplorer应助fukase采纳,获得10
1分钟前
自律完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
fukase完成签到,获得积分10
2分钟前
fukase发布了新的文献求助10
2分钟前
jiangjiang完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
tsttst完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Qiuyajing完成签到,获得积分10
3分钟前
3分钟前
星辰大海应助兴奋的嘉懿采纳,获得10
3分钟前
祖之微笑发布了新的文献求助10
3分钟前
兴奋的嘉懿完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
葱饼完成签到 ,获得积分10
4分钟前
香蕉觅云应助sunshihaoya采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204743
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629