Prognostic model for prostate cancer based on glycolysis-related genes and non-negative matrix factorization analysis

比例危险模型 非负矩阵分解 基因 计算生物学 列线图 生存分析 生物 肿瘤科 癌症研究 医学 矩阵分解 内科学 遗传学 特征向量 物理 量子力学
作者
ZECHAO LU,Fucai Tang,Haobin Zhou,ZEGUANG LU,WANYAN CAI,JIAHAO ZHANG,ZHICHENG TANG,Yongchang Lai,Zhaohui He
出处
期刊:Biocell 卷期号:47 (2): 339-350
标识
DOI:10.32604/biocell.2023.023750
摘要

Background: Establishing an appropriate prognostic model for PCa is essential for its effective treatment. Glycolysis is a vital energy-harvesting mechanism for tumors. Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential. Methods: First, gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB). Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained, which were used in non-negative matrix factorization (NMF) to identify clusters. The correlation between clusters and clinical features was discussed, and the differentially expressed genes (DEGs) between the two clusters were investigated. Based on the DEGs, we investigated the biological differences between clusters, including immune cell infiltration, mutation, tumor immune dysfunction and exclusion, immune function, and checkpoint genes. To establish the prognostic model, the genes were filtered based on univariable Cox regression, LASSO, and multivariable Cox regression. Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model. A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting. Result: The genes obtained from MSigDB were enriched in glycolysis functions. Two clusters were identified by NMF analysis based on 272 glycolysis-related genes, and a prognostic model based on DEGs between the two clusters was finally established. The prognostic model consisted of LAMPS, SPRN, ATOH1, TANC1, ETV1, TDRD1, KLK14, MESP2, POSTN, CRIP2, NAT1, AKR7A3, PODXL, CARTPT, and PCDHGB2. All sample, training, and test cohorts from The Cancer Genome Atlas (TCGA) and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups. The area under the ROC curve showed great performance of this prognostic model. Conclusion: A prognostic model based on glycolysis-related genes was established, with great performance and potential significance to the clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助玉玉采纳,获得10
刚刚
dungaway发布了新的文献求助10
1秒前
汉堡包应助醉舞烟罗采纳,获得10
2秒前
强砸完成签到,获得积分10
3秒前
房房房破防啦完成签到,获得积分10
6秒前
小二郎应助汕头凯奇采纳,获得10
6秒前
思源应助keke采纳,获得10
8秒前
11秒前
77MM完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
充电宝应助lz采纳,获得10
15秒前
王白纸发布了新的文献求助10
15秒前
1234应助北风采纳,获得10
15秒前
Ryouji完成签到,获得积分10
17秒前
木子发布了新的文献求助10
17秒前
慕青应助殷勤的非笑采纳,获得10
18秒前
19秒前
T拐拐发布了新的文献求助10
20秒前
落后爆米花完成签到,获得积分10
22秒前
24秒前
七弦琴无心请问完成签到,获得积分10
24秒前
26秒前
26秒前
26秒前
zila完成签到,获得积分10
27秒前
28秒前
28秒前
Skyfall发布了新的文献求助10
31秒前
玉玉发布了新的文献求助10
31秒前
会飞的帝企鹅完成签到,获得积分10
34秒前
34秒前
兴奋棒球给兴奋棒球的求助进行了留言
35秒前
科研通AI2S应助北风采纳,获得10
36秒前
36秒前
冷酷愚志完成签到,获得积分10
37秒前
乐乐应助子勋采纳,获得10
39秒前
LZ完成签到,获得积分10
39秒前
小智0921完成签到,获得积分10
39秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907076
关于积分的说明 8340494
捐赠科研通 2577712
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967