The Shockley–Queisser limit and the conversion efficiency of silicon-based solar cells

光伏系统 极限(数学) 可再生能源 非晶硅 环境科学 光伏 晶体硅 太阳能 太阳能电池 工程物理 电气工程 工程类 数学 数学分析
作者
A. R. Zanatta
出处
期刊:Results in optics [Elsevier BV]
卷期号:9: 100320-100320 被引量:8
标识
DOI:10.1016/j.rio.2022.100320
摘要

According to some estimates, every hour, Sun provides planet Earth with more energy than humankind consumes in a whole year. Part of this energy has been essential to ensure living conditions (warmth and food production, for instance) and, more recently, to generate electricity by means of atmospheric (aeolian) and/or geographical (hydropower) sources. In addition to these, the direct (photovoltaic PV) conversion of solar radiation into electricity represents a very elegant method of power generation that causes minimum (or no) environmental disturbance. As a result, numerous efforts have been dedicated to further advance the achievement of clean and sustainable electricity, as supplied by the PV science and technology. Within this scenario, the association of PV with the silicon (Si) semiconductor industry played a crucial role–either by introducing new scientific insights or by promoting successive costs reductions in the field of renewable energy conversion. Yet, the performance of these so-called (either crystalline or amorphous) Si-based solar cells was always a matter of concern. In fact, the subject gained attention with the seminal work by Walter Shockley and Hans Queisser that, in 1961, proposed a model according to which the maximum efficiency of a solar cell is determined by both the solar spectrum and the properties of the semiconductor material. Since then, the work by Shockley and Queisser (also known as the Shockley–Queisser limit) has experienced some improvements and became a reference in the field. Motivated by these facts, along with the main scientific–technological achievements they provided, the Shockley–Queisser limit and the conversion efficiency of the Si-based solar cells along the last 60 years form the basis of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张美美发布了新的文献求助10
1秒前
科研通AI2S应助钙帮弟子采纳,获得10
1秒前
1秒前
2秒前
YIYI发布了新的文献求助10
3秒前
想有所成完成签到,获得积分20
3秒前
无奈的平文完成签到 ,获得积分10
3秒前
小蘑菇应助简单若云采纳,获得10
3秒前
白泽发布了新的文献求助10
4秒前
4秒前
铭心完成签到,获得积分10
4秒前
刘永红发布了新的文献求助10
5秒前
5秒前
顺心的翠丝完成签到 ,获得积分10
5秒前
nn发布了新的文献求助10
6秒前
想有所成发布了新的文献求助10
6秒前
7秒前
哩哩发布了新的文献求助10
7秒前
weberk完成签到,获得积分10
7秒前
打打应助限量版小祸害采纳,获得30
8秒前
10秒前
?.?完成签到 ,获得积分10
10秒前
11秒前
脑洞疼应助刘永红采纳,获得10
11秒前
柔弱绝施完成签到,获得积分10
11秒前
白小白发布了新的文献求助10
12秒前
雨歌发布了新的文献求助10
12秒前
12秒前
WROBTY发布了新的文献求助10
13秒前
13秒前
15秒前
17秒前
zzzzz关注了科研通微信公众号
17秒前
动听紫文发布了新的文献求助50
17秒前
ZJX应助能干的寒凡采纳,获得10
19秒前
19秒前
kwai发布了新的文献求助30
20秒前
乐观伟诚发布了新的文献求助10
21秒前
暴走小面包完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658