Learning View-Based Graph Convolutional Network for Multi-View 3D Shape Analysis

计算机科学 判别式 图形 人工智能 模式识别(心理学) 卷积神经网络 理论计算机科学
作者
Xin Wei,Ruixuan Yu,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 7525-7541 被引量:18
标识
DOI:10.1109/tpami.2022.3221785
摘要

View-based approach that recognizes 3D shape through its projected 2D images has achieved state-of-the-art results for 3D shape recognition. The major challenges are how to aggregate multi-view features and deal with 3D shapes in arbitrary poses. We propose two versions of a novel view-based Graph Convolutional Network, dubbed view-GCN and view-GCN++, to recognize 3D shape based on graph representation of multiple views. We first construct view-graph with multiple views as graph nodes, then design two graph convolutional networks over the view-graph to hierarchically learn discriminative shape descriptor considering relations of multiple views. Specifically, view-GCN is a hierarchical network based on two pivotal operations, i.e., feature transform based on local positional and non-local graph convolution, and graph coarsening based on a selective view-sampling operation. To deal with rotation sensitivity, we further propose view-GCN++ with local attentional graph convolution operation and rotation robust view-sampling operation for graph coarsening. By these designs, view-GCN++ achieves invariance to transformations under the finite subgroup of rotation group SO(3). Extensive experiments on benchmark datasets (i.e., ModelNet40, ScanObjectNN, RGBD and ShapeNet Core55) show that view-GCN and view-GCN++ achieve state-of-the-art results for 3D shape classification and retrieval tasks under aligned and rotated settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
leeom发布了新的文献求助10
2秒前
Timo干物类完成签到,获得积分10
2秒前
北冥有鱼给北冥有鱼的求助进行了留言
2秒前
2秒前
王冉冉发布了新的文献求助30
2秒前
Ava应助易拉罐采纳,获得10
3秒前
隐形曼青应助无心的土豆采纳,获得10
3秒前
乐于助人大好人完成签到 ,获得积分10
3秒前
ZZQ完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Lina HE完成签到 ,获得积分10
7秒前
852应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
进步完成签到,获得积分10
8秒前
852应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
iNk应助dh采纳,获得20
8秒前
orixero应助科研通管家采纳,获得30
8秒前
思源应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048