亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning View-Based Graph Convolutional Network for Multi-View 3D Shape Analysis

计算机科学 判别式 图形 人工智能 模式识别(心理学) 卷积神经网络 理论计算机科学
作者
Xin Wei,Ruixuan Yu,Jian Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7525-7541 被引量:18
标识
DOI:10.1109/tpami.2022.3221785
摘要

View-based approach that recognizes 3D shape through its projected 2D images has achieved state-of-the-art results for 3D shape recognition. The major challenges are how to aggregate multi-view features and deal with 3D shapes in arbitrary poses. We propose two versions of a novel view-based Graph Convolutional Network, dubbed view-GCN and view-GCN++, to recognize 3D shape based on graph representation of multiple views. We first construct view-graph with multiple views as graph nodes, then design two graph convolutional networks over the view-graph to hierarchically learn discriminative shape descriptor considering relations of multiple views. Specifically, view-GCN is a hierarchical network based on two pivotal operations, i.e., feature transform based on local positional and non-local graph convolution, and graph coarsening based on a selective view-sampling operation. To deal with rotation sensitivity, we further propose view-GCN++ with local attentional graph convolution operation and rotation robust view-sampling operation for graph coarsening. By these designs, view-GCN++ achieves invariance to transformations under the finite subgroup of rotation group SO(3). Extensive experiments on benchmark datasets (i.e., ModelNet40, ScanObjectNN, RGBD and ShapeNet Core55) show that view-GCN and view-GCN++ achieve state-of-the-art results for 3D shape classification and retrieval tasks under aligned and rotated settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lingzi670完成签到,获得积分10
2秒前
bkagyin应助六七采纳,获得10
2秒前
3秒前
lingzi670发布了新的文献求助10
8秒前
10秒前
快乐排骨汤完成签到 ,获得积分10
16秒前
若水完成签到,获得积分10
17秒前
21秒前
yyy发布了新的文献求助10
25秒前
yyy完成签到,获得积分20
36秒前
jyy应助好好采纳,获得10
39秒前
科研通AI2S应助ldj6670采纳,获得10
40秒前
50秒前
52秒前
54秒前
shaw发布了新的文献求助10
1分钟前
害羞的书芹完成签到,获得积分10
1分钟前
辉光日新完成签到,获得积分10
1分钟前
22222发布了新的文献求助10
1分钟前
1分钟前
shaw关注了科研通微信公众号
1分钟前
1分钟前
斯文的凝珍完成签到,获得积分10
1分钟前
1分钟前
lalalatiancai发布了新的文献求助10
1分钟前
橙子味的邱憨憨完成签到 ,获得积分10
1分钟前
压缩完成签到 ,获得积分10
1分钟前
1分钟前
CXE发布了新的文献求助10
1分钟前
zzxp完成签到,获得积分10
1分钟前
1分钟前
1分钟前
梁朝伟发布了新的文献求助10
1分钟前
2分钟前
小二郎应助时尚的飞机采纳,获得10
2分钟前
picapica668发布了新的文献求助10
2分钟前
研友_yLpQrn完成签到,获得积分10
2分钟前
胡可完成签到 ,获得积分10
2分钟前
lalalatiancai完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335240
求助须知:如何正确求助?哪些是违规求助? 2964478
关于积分的说明 8613836
捐赠科研通 2643346
什么是DOI,文献DOI怎么找? 1447285
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953