Degradation-Aware Ensemble of Diverse Predictors for Remaining Useful Life Prediction

预言 集合预报 集成学习 计算机科学 预测建模 机器学习 相似性(几何) 数据挖掘 人工智能 噪音(视频) 图像(数学)
作者
Venkat Pavan Nemani,Adam Thelen,Chao Hu,Steve Daining
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:145 (3) 被引量:3
标识
DOI:10.1115/1.4056149
摘要

Abstract A traditional ensemble approach to predicting the remaining useful life (RUL) of equipment and other assets has been constructing data-driven and model-based ensembles using identical predictors. This ensemble approach may perform well on quality data collected from laboratory tests but may ultimately fail when deployed in the field because of higher-than-expected noise, missing measurements, and different degradation trends. In such work environments, the high similarity of the predictors can lead to large under/overestimates of RUL, where the ensemble is only as accurate as the predictor which under/overestimated RUL the least. In response to this, we investigate whether an ensemble of diverse predictors might be able to predict RUL consistently and accurately by dynamically aggregating the predictions of various algorithms which are found to perform differently under the same conditions. We propose improving ensemble model performance by (1) using a combination of diverse learning algorithms which are found to perform differently under the same conditions and (2) training a data-driven model to adaptively estimate the prediction weight each predictor receives. The proposed methods are compared to three existing ensemble prognostics methods on open-source run-to-failure datasets from two popular systems of prognostics research: lithium-ion batteries and rolling element bearings. Results indicate the proposed ensemble method provides the most consistent prediction accuracy and uncertainty estimation quality across multiple test cases, whereas the individual predictors and ensembles of identical predictors tend to provide overconfident predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助红箭烟雨采纳,获得10
刚刚
SYLH应助木鸽子采纳,获得30
2秒前
小猪完成签到 ,获得积分10
3秒前
3秒前
NexusExplorer应助漫山采纳,获得10
5秒前
海阔凭完成签到,获得积分10
6秒前
奇异果完成签到,获得积分20
7秒前
柊巳发布了新的文献求助10
7秒前
8秒前
Irving发布了新的文献求助10
8秒前
9秒前
恒123完成签到,获得积分10
12秒前
xxddw完成签到,获得积分10
12秒前
NexusExplorer应助liam采纳,获得10
12秒前
oreo发布了新的文献求助10
13秒前
杨恭鑫发布了新的文献求助10
13秒前
14秒前
所所应助turui采纳,获得10
17秒前
18秒前
oreo完成签到,获得积分10
18秒前
Dou完成签到,获得积分10
18秒前
20秒前
20秒前
北海qy完成签到,获得积分10
21秒前
新安完成签到,获得积分10
21秒前
22秒前
22秒前
24秒前
win发布了新的文献求助10
24秒前
Ava应助研友_楼灵煌采纳,获得10
24秒前
24秒前
研友_VZG7GZ应助裴佳晨采纳,获得10
25秒前
笨笨友桃完成签到,获得积分10
26秒前
26秒前
liam发布了新的文献求助10
27秒前
科研通AI2S应助陆靖易采纳,获得10
28秒前
dbdxyty发布了新的文献求助10
29秒前
柚子发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
zhou应助侯松采纳,获得30
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415