Degradation-Aware Ensemble of Diverse Predictors for Remaining Useful Life Prediction

预言 集合预报 集成学习 计算机科学 预测建模 机器学习 相似性(几何) 数据挖掘 人工智能 噪音(视频) 图像(数学)
作者
Venkat Pavan Nemani,Adam Thelen,Chao Hu,Steve Daining
出处
期刊:Journal of Mechanical Design 卷期号:145 (3) 被引量:3
标识
DOI:10.1115/1.4056149
摘要

Abstract A traditional ensemble approach to predicting the remaining useful life (RUL) of equipment and other assets has been constructing data-driven and model-based ensembles using identical predictors. This ensemble approach may perform well on quality data collected from laboratory tests but may ultimately fail when deployed in the field because of higher-than-expected noise, missing measurements, and different degradation trends. In such work environments, the high similarity of the predictors can lead to large under/overestimates of RUL, where the ensemble is only as accurate as the predictor which under/overestimated RUL the least. In response to this, we investigate whether an ensemble of diverse predictors might be able to predict RUL consistently and accurately by dynamically aggregating the predictions of various algorithms which are found to perform differently under the same conditions. We propose improving ensemble model performance by (1) using a combination of diverse learning algorithms which are found to perform differently under the same conditions and (2) training a data-driven model to adaptively estimate the prediction weight each predictor receives. The proposed methods are compared to three existing ensemble prognostics methods on open-source run-to-failure datasets from two popular systems of prognostics research: lithium-ion batteries and rolling element bearings. Results indicate the proposed ensemble method provides the most consistent prediction accuracy and uncertainty estimation quality across multiple test cases, whereas the individual predictors and ensembles of identical predictors tend to provide overconfident predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由的中蓝完成签到 ,获得积分10
1秒前
隐形曼青应助尊敬的以哈采纳,获得10
2秒前
cc应助zhyccc采纳,获得10
3秒前
3秒前
crk完成签到,获得积分10
3秒前
3秒前
橙啊程关注了科研通微信公众号
4秒前
5秒前
6秒前
爱76的5发布了新的文献求助10
6秒前
crk发布了新的文献求助10
7秒前
JX发布了新的文献求助30
8秒前
ajun发布了新的文献求助10
9秒前
yy发布了新的文献求助30
10秒前
劲秉应助风行采纳,获得10
11秒前
12秒前
李健的小迷弟应助北雁采纳,获得10
12秒前
13秒前
13秒前
justinshi完成签到,获得积分10
14秒前
AU发布了新的文献求助10
14秒前
zhou完成签到,获得积分10
15秒前
小蘑菇应助ajun采纳,获得10
15秒前
孟严青完成签到,获得积分10
16秒前
勋的猫发布了新的文献求助10
16秒前
嘟嘟雯完成签到 ,获得积分10
16秒前
18秒前
SHAOXiaoqian发布了新的文献求助10
18秒前
进击的小白菜完成签到,获得积分10
18秒前
zhou发布了新的文献求助10
18秒前
19秒前
景胜杰发布了新的文献求助10
19秒前
feilu应助马鲛采纳,获得10
20秒前
甘泊寓完成签到,获得积分10
20秒前
Orange应助childheart采纳,获得20
21秒前
21秒前
xj发布了新的文献求助10
22秒前
FY完成签到,获得积分10
23秒前
肖研研完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460768
求助须知:如何正确求助?哪些是违规求助? 3054744
关于积分的说明 9044358
捐赠科研通 2744477
什么是DOI,文献DOI怎么找? 1505584
科研通“疑难数据库(出版商)”最低求助积分说明 695743
邀请新用户注册赠送积分活动 695063