亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling

计算机科学 强化学习 工作车间 调度(生产过程) 人工智能 作业车间调度 机器学习 作业调度程序 分布式计算 布线(电子设计自动化) 流水车间调度 数学优化 嵌入式系统 程序设计语言 数学 排队
作者
Jia-Dong Zhang,Zhixiang He,Wing-Ho Chan,Chi-Yin Chow
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:259: 110083-110083 被引量:34
标识
DOI:10.1016/j.knosys.2022.110083
摘要

The flexible job shop scheduling (FJSS) is important in real-world factories due to the wide applicability. FJSS schedules the operations of jobs to be executed by specific machines at the appropriate time slots based on two decision steps, namely, the job sequencing (i.e., the sequence of jobs executed on a machine) and the job routing (i.e., the route of a job to a machine). Most current studies utilize either deep reinforcement learning (DRL) or multi-agent reinforcement learning (MARL) for FJSS with a large search space. However, these studies suffer from two major limitations: no integration between DRL and MARL, and independent agents without cooperation. To this end, we propose a new model for FJSS, called DeepMAG based on Deep reinforcement learning with Multi-Agent Graphs. DeepMAG has two key contributions. (1) Integration between DRL and MARL. DeepMAG integrates DRL with MARL by associating a different agent to each machine and job. Each agent exploits DRL to find the best action on the job sequencing and routing. After a job-associated agent chooses the best machine, the job becomes a job candidate for the machine to proceed to its next operation, while a machine-associated agent selects the next job from its job candidate set to be processed. (2) Cooperative agents. A multi-agent graph is built based on the operation relationships among machines and jobs. An agent cooperates with its neighboring agents to take one cooperative action. Finally, we conduct experiments to evaluate the performance of DeepMAG and experimental results show that it outperforms the state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
羽羽完成签到 ,获得积分10
15秒前
15秒前
flywire发布了新的文献求助200
18秒前
lei发布了新的文献求助10
21秒前
24秒前
Shrine完成签到,获得积分10
30秒前
Friday完成签到,获得积分10
32秒前
开心寄松发布了新的文献求助10
33秒前
xx关闭了xx文献求助
40秒前
葛力发布了新的文献求助10
41秒前
两个轮完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
更明发布了新的文献求助10
1分钟前
清爽冬莲完成签到 ,获得积分10
1分钟前
flywire完成签到,获得积分10
1分钟前
葛力发布了新的文献求助10
1分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
cc应助科研通管家采纳,获得10
2分钟前
汉堡包应助更明采纳,获得10
2分钟前
小狗发布了新的文献求助10
2分钟前
kongkai完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
维维完成签到 ,获得积分10
2分钟前
huangwensou发布了新的文献求助10
2分钟前
深情安青应助Sience采纳,获得10
2分钟前
kongkai发布了新的文献求助200
2分钟前
小狗发布了新的文献求助10
2分钟前
zommen完成签到 ,获得积分10
2分钟前
xx发布了新的文献求助10
2分钟前
zhuyabo发布了新的文献求助10
3分钟前
tutu完成签到,获得积分10
3分钟前
然463完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069