亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,María Henar Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:52
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助背后凌翠采纳,获得10
3秒前
3秒前
君故完成签到,获得积分10
4秒前
ding应助zzzz采纳,获得10
7秒前
Zheyuan发布了新的文献求助10
10秒前
开心绿柳完成签到,获得积分0
11秒前
15秒前
16秒前
zzzz完成签到,获得积分10
17秒前
欢歌笑语发布了新的文献求助10
20秒前
思源应助闪闪满天采纳,获得10
22秒前
zzzz发布了新的文献求助10
22秒前
纪富完成签到 ,获得积分10
23秒前
英姑应助Sky采纳,获得10
27秒前
Cosmosurfer完成签到,获得积分10
34秒前
晨曦呢完成签到 ,获得积分10
37秒前
38秒前
38秒前
38秒前
孤独蘑菇完成签到 ,获得积分10
39秒前
40秒前
健忘涟妖发布了新的文献求助10
44秒前
闪闪满天发布了新的文献求助10
45秒前
阿萨德发布了新的文献求助10
45秒前
花花发布了新的文献求助10
46秒前
51秒前
程昱发布了新的文献求助10
51秒前
汉堡包应助闪闪满天采纳,获得10
52秒前
阿萨德完成签到,获得积分20
52秒前
枝头树上的布谷鸟完成签到 ,获得积分10
54秒前
慕青应助坚强的唇膏采纳,获得10
55秒前
龙行天下完成签到 ,获得积分10
57秒前
1分钟前
lijiawei完成签到,获得积分10
1分钟前
海带完成签到,获得积分10
1分钟前
Hao完成签到,获得积分10
1分钟前
1分钟前
breeze完成签到,获得积分10
1分钟前
1分钟前
海带发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787991
求助须知:如何正确求助?哪些是违规求助? 5703683
关于积分的说明 15473139
捐赠科研通 4916182
什么是DOI,文献DOI怎么找? 2646245
邀请新用户注册赠送积分活动 1593878
关于科研通互助平台的介绍 1548228