Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,María Henar Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:52
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文城完成签到 ,获得积分10
刚刚
正直的雅绿完成签到,获得积分10
2秒前
hdanile完成签到 ,获得积分10
6秒前
爱吃蜜桃的猴子完成签到,获得积分10
7秒前
张糊糊完成签到 ,获得积分10
8秒前
雨水完成签到,获得积分10
10秒前
Quency完成签到 ,获得积分10
10秒前
科研通AI2S应助上山的吗喽采纳,获得10
10秒前
Archer完成签到,获得积分10
11秒前
12秒前
漾漾完成签到,获得积分10
13秒前
隐形的大米完成签到,获得积分20
13秒前
炙热的萤完成签到,获得积分10
14秒前
木棉完成签到,获得积分10
14秒前
Zz完成签到 ,获得积分10
17秒前
MJ完成签到,获得积分10
17秒前
18秒前
小黄瓜896完成签到,获得积分10
18秒前
小马甲应助tjnusq采纳,获得10
19秒前
广州队完成签到,获得积分10
19秒前
guozizi发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
壮观的谷冬完成签到 ,获得积分0
23秒前
量子星尘发布了新的文献求助10
24秒前
艾草纷飞完成签到,获得积分10
24秒前
adeno发布了新的文献求助10
24秒前
我思故我在完成签到,获得积分0
25秒前
瘦瘦安梦完成签到,获得积分10
25秒前
Hailey发布了新的文献求助10
26秒前
ltt发布了新的文献求助10
26秒前
Will完成签到,获得积分10
27秒前
苽峰完成签到,获得积分10
27秒前
顺利紫山完成签到,获得积分10
29秒前
31秒前
万物可爱完成签到 ,获得积分20
34秒前
34秒前
李健的小迷弟应助ltt采纳,获得10
34秒前
fx发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603567
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854346
捐赠科研通 4693603
什么是DOI,文献DOI怎么找? 2540859
邀请新用户注册赠送积分活动 1507072
关于科研通互助平台的介绍 1471806