Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,M.H. Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:65: 622-639 被引量:30
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助白兔采纳,获得10
刚刚
隐形曼青应助王jj采纳,获得10
1秒前
lyt发布了新的文献求助10
1秒前
2秒前
2秒前
清伍发布了新的文献求助50
3秒前
甜蜜帽子发布了新的文献求助20
4秒前
lijin发布了新的文献求助10
6秒前
温暖芒果发布了新的文献求助10
6秒前
6秒前
7秒前
大力的问蕊完成签到,获得积分10
7秒前
科研通AI2S应助eternity136采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
静笃完成签到,获得积分10
8秒前
8秒前
Beatrice完成签到,获得积分10
9秒前
10秒前
666发布了新的文献求助10
11秒前
12秒前
王jj发布了新的文献求助10
12秒前
12秒前
lipel完成签到,获得积分10
12秒前
打打应助shaadoushi采纳,获得10
13秒前
吕凯迪发布了新的文献求助10
14秒前
14秒前
赶紧毕业完成签到,获得积分10
14秒前
柒z完成签到,获得积分10
14秒前
15秒前
酷波er应助稳重的寻琴采纳,获得10
16秒前
云墨发布了新的文献求助10
16秒前
草木发布了新的文献求助10
16秒前
wh发布了新的文献求助10
17秒前
17秒前
霜烬染发布了新的文献求助10
18秒前
可爱丸子完成签到,获得积分10
18秒前
蓝天白云发布了新的文献求助10
19秒前
JamesPei应助甜甜无极采纳,获得10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124590
求助须知:如何正确求助?哪些是违规求助? 4328796
关于积分的说明 13488391
捐赠科研通 4163135
什么是DOI,文献DOI怎么找? 2282248
邀请新用户注册赠送积分活动 1283387
关于科研通互助平台的介绍 1222612