Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,M.H. Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:30
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助chengll采纳,获得10
1秒前
3秒前
4秒前
4秒前
在水一方应助尹姝采纳,获得10
4秒前
丘比特应助易佳采纳,获得10
5秒前
8R60d8应助koasy采纳,获得10
5秒前
可研发布了新的文献求助20
5秒前
7秒前
李健的小迷弟应助七哥采纳,获得10
7秒前
Akim应助kai采纳,获得10
8秒前
外向向雁完成签到,获得积分10
8秒前
8秒前
10秒前
思源应助zy采纳,获得10
10秒前
zhao完成签到,获得积分10
11秒前
小胜发布了新的文献求助10
11秒前
12秒前
123456完成签到,获得积分10
12秒前
13秒前
超越好帅完成签到,获得积分20
14秒前
15秒前
完美世界应助lianliyou采纳,获得10
16秒前
科研通AI2S应助王ml采纳,获得10
16秒前
geoyuan完成签到,获得积分10
16秒前
淡定荧完成签到,获得积分10
16秒前
17秒前
超越好帅发布了新的文献求助10
17秒前
慧慧完成签到,获得积分10
17秒前
111完成签到,获得积分10
19秒前
李爱国应助王红玉采纳,获得10
20秒前
我是老大应助yu采纳,获得10
20秒前
kai发布了新的文献求助10
21秒前
雨天有伞发布了新的文献求助10
22秒前
酷酷珠发布了新的文献求助20
24秒前
26秒前
Dsunflower完成签到 ,获得积分10
28秒前
29秒前
长情的涔完成签到 ,获得积分10
30秒前
31秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271144
求助须知:如何正确求助?哪些是违规求助? 2910356
关于积分的说明 8353976
捐赠科研通 2580873
什么是DOI,文献DOI怎么找? 1403826
科研通“疑难数据库(出版商)”最低求助积分说明 656001
邀请新用户注册赠送积分活动 635381