已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,María Henar Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:52
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆沉发布了新的文献求助10
刚刚
英俊的铭应助chigga采纳,获得10
刚刚
清秀的碧彤完成签到,获得积分10
刚刚
机灵剑通完成签到,获得积分10
刚刚
Carrots完成签到 ,获得积分10
2秒前
群山发布了新的文献求助30
3秒前
koalafish发布了新的文献求助10
4秒前
Summer完成签到 ,获得积分10
4秒前
5秒前
jiayou完成签到,获得积分10
5秒前
彭于晏应助keepory86采纳,获得30
5秒前
坐雨赏花完成签到 ,获得积分10
9秒前
贾靖涵发布了新的文献求助10
9秒前
9秒前
18485649437发布了新的文献求助10
10秒前
青葱鱼块完成签到 ,获得积分10
10秒前
11秒前
安详的夜春完成签到 ,获得积分10
11秒前
shame完成签到 ,获得积分10
12秒前
星辰大海应助布吉岛采纳,获得10
12秒前
轻松的小天鹅完成签到,获得积分10
12秒前
执着艳完成签到 ,获得积分10
13秒前
qqazws888完成签到 ,获得积分10
15秒前
怡然的复天完成签到,获得积分10
15秒前
哈密哈密完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
XinEr完成签到 ,获得积分10
17秒前
啦啦啦完成签到,获得积分10
17秒前
19秒前
19秒前
Retromer完成签到,获得积分10
20秒前
悄悄完成签到 ,获得积分10
20秒前
whoknowsname完成签到,获得积分10
21秒前
ZY发布了新的文献求助10
21秒前
美好善斓完成签到 ,获得积分10
22秒前
23秒前
乌拉拉完成签到,获得积分20
23秒前
陆沉完成签到,获得积分10
23秒前
24秒前
杨雪妮完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004