Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,María Henar Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:52
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待雅寒完成签到,获得积分10
刚刚
香蕉觅云应助daydreamammaking采纳,获得10
刚刚
科研通AI6应助欢呼的小玉采纳,获得30
刚刚
1秒前
cxyyy完成签到,获得积分10
1秒前
1秒前
结实的元灵完成签到,获得积分10
1秒前
2秒前
哆啦A梦发布了新的文献求助10
2秒前
2秒前
彳亍1117应助gao采纳,获得10
2秒前
文静的柚子完成签到,获得积分10
2秒前
min完成签到,获得积分20
3秒前
3秒前
伶俐骁发布了新的文献求助10
3秒前
4秒前
Akim应助sunny采纳,获得10
4秒前
完美世界应助飞鸟采纳,获得10
4秒前
baiyang99完成签到,获得积分10
4秒前
追寻的巧曼完成签到,获得积分20
4秒前
4秒前
美味吐司完成签到,获得积分20
4秒前
liu发布了新的文献求助30
5秒前
雨下着的坡道完成签到,获得积分10
5秒前
guoguo发布了新的文献求助10
5秒前
简单如天发布了新的文献求助10
5秒前
小姚发布了新的文献求助10
5秒前
胡萝卜10000号完成签到,获得积分10
6秒前
David完成签到,获得积分10
6秒前
min发布了新的文献求助10
6秒前
6秒前
6秒前
安详的馒头关注了科研通微信公众号
6秒前
7秒前
阿瑶完成签到,获得积分10
7秒前
汉堡包应助弥生采纳,获得10
7秒前
体贴擎发布了新的文献求助10
7秒前
大鸣王潮完成签到,获得积分10
8秒前
红枣完成签到,获得积分10
8秒前
哈哈关注了科研通微信公众号
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207