Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,María Henar Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:52
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wuze完成签到,获得积分10
1秒前
大杨发布了新的文献求助10
3秒前
5秒前
SciGPT应助lh961129采纳,获得10
5秒前
you完成签到,获得积分10
5秒前
6秒前
简简单单完成签到,获得积分10
7秒前
丘比特应助琉琉硫采纳,获得10
8秒前
森森发布了新的文献求助10
9秒前
lsh完成签到,获得积分10
10秒前
li完成签到 ,获得积分10
11秒前
kjingknk完成签到 ,获得积分10
11秒前
12秒前
you发布了新的文献求助10
13秒前
ding7862完成签到,获得积分10
13秒前
FashionBoy应助roro熊采纳,获得10
13秒前
JamesPei应助龙江游侠采纳,获得10
14秒前
14秒前
15秒前
18秒前
英俊延恶发布了新的文献求助30
18秒前
洪山老狗完成签到,获得积分10
18秒前
lh961129发布了新的文献求助10
19秒前
覃小冬发布了新的文献求助10
19秒前
壮观的哈密瓜完成签到,获得积分10
20秒前
科目三应助森森采纳,获得10
21秒前
漠池完成签到,获得积分10
22秒前
roro熊发布了新的文献求助10
24秒前
龙江游侠完成签到,获得积分10
25秒前
25秒前
enen完成签到,获得积分10
25秒前
25秒前
肥仔龙完成签到,获得积分10
26秒前
刘振坤完成签到,获得积分10
26秒前
龙江游侠发布了新的文献求助10
28秒前
萧雨墨发布了新的文献求助10
30秒前
激动的爆米花关注了科研通微信公众号
30秒前
cy发布了新的文献求助10
30秒前
Lucas应助香菜芋头采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281