Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry

刀具磨损 机械加工 钻探 碳化钨 机床 工程类 机械工程 硬质合金 计算机科学 碳化物 材料科学 复合材料 冶金
作者
C. Domínguez-Monferrer,J. Fernández-Pérez,Rosangela de Araújo Santos,María Henar Miguélez,J.L. Cantero
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 622-639 被引量:52
标识
DOI:10.1016/j.jmsy.2022.10.018
摘要

This research presents an analysis of real production data of an automatic drilling industrial system and emphasizes its ability as a process control indicator in terms of tool wear. In particular, the study is framed in Carbon-fiber-reinforced polymer composites (CFRPs) drilling operations carried out at Airbus facilities. The industrial process data were directly collected from the manufacturing plant in Getafe (in the Madrid-Spain region) and come from three different sources: spindle power consumption signals, obtained from the internal instrumentation of the machine, cutting tools wear analysis, and hole quality inspection. The main goal is to use different machining features such as tool accumulated cutting time, together with signal features to feed Machine Learning (ML) algorithms to predict tool wear. To address the inherent variability of complex production systems, it has been proposed a specific methodology that is applicable to control machining operations. The approach includes data collection, data pre-processing, and the application of Linear Regression, k-Nearest Neighbors, and Random Forest ML algorithms. As an outcome to be predicted, a novel qualitative scale of the general condition of the drill is proposed. The predictive models show promising results bearing in mind the quality and quantity of the available data – up to 3500 holes drilled with 8 diamond-coated tungsten carbide tools under different work conditions (number of layers, thickness, and others). The relevance of the benchmarks defined as representative features of the spindle power consumption as well as other machining-related parameters and their relationship with tool wear has been discussed. The Random Forest model gets the best results, being the most interesting variables the accumulated cutting time and the maximum spindle power consumption, and the most irrelevant, the number of parts to be drilled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知道发布了新的文献求助10
刚刚
byron完成签到,获得积分10
刚刚
刚刚
刚刚
lcz发布了新的文献求助10
1秒前
1秒前
Once发布了新的文献求助10
1秒前
一王打尽完成签到,获得积分10
1秒前
24K纯帅发布了新的文献求助10
1秒前
852应助流逝采纳,获得30
2秒前
大个应助欢喜冷S亦A采纳,获得10
2秒前
2秒前
茨橙完成签到,获得积分10
2秒前
嘻嘻发布了新的文献求助10
2秒前
风一起发布了新的文献求助10
3秒前
3秒前
在水一方应助诗蕊采纳,获得10
3秒前
byron发布了新的文献求助10
3秒前
3秒前
3秒前
小二郎应助大力的诗蕾采纳,获得10
3秒前
爆米花应助xiayiyi采纳,获得10
3秒前
3秒前
YY完成签到 ,获得积分10
5秒前
宋温暖举报77求助涉嫌违规
5秒前
传奇3应助WUQINGHALASHAO采纳,获得10
5秒前
Dore发布了新的文献求助10
5秒前
Arlene发布了新的文献求助10
5秒前
小郭呀完成签到,获得积分10
5秒前
香蕉梨愁完成签到,获得积分10
6秒前
wyl发布了新的文献求助10
6秒前
7秒前
怡然冷安完成签到,获得积分10
7秒前
汉堡包应助ping采纳,获得30
7秒前
SSS发布了新的文献求助10
7秒前
7秒前
丘比特应助科研锐采纳,获得10
8秒前
8秒前
BOSSJING完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721