亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeKeDVer: A deep learning-based multi-type software vulnerability classification framework using vulnerability description and source code

计算机科学 源代码 脆弱性(计算) 人工智能 分类器(UML) 机器学习 脆弱性评估 数据挖掘 计算机安全 程序设计语言 心理学 心理弹性 心理治疗师
作者
Yukun Dong,Yeer Tang,Xiaotong Cheng,Yufei Yang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:163: 107290-107290 被引量:3
标识
DOI:10.1016/j.infsof.2023.107290
摘要

Software vulnerabilities have confused software developers for a long time. Vulnerability classification is thus crucial, through which we can know the specific type of vulnerability and then conduct targeted repair. Stack of papers have looked into deep learning-based multi-type vulnerability classification, among which most are based on vulnerability descriptions and some are based on source code. While vulnerability descriptions can sometimes mislead vulnerability classification and source code-based approaches have been rarely explored in multi-type vulnerability classification. We design DeKeDVer (Vulnerability Descriptions and Key Domain based Vulnerability Classifier) with two objectives: (i) to extract more useful information from vulnerability descriptions; (ii) to better utilize the information source code can reflect. In this work, we propose a multi-type vulnerability classifier which combine vulnerability descriptions and source code together. We process vulnerability descriptions and source code of each project separately. For the vulnerability description of a sample, we preprocess it using a specified way we design based on our observations on numerous descriptions and then select text features. After that, Text Recurrent Convolutional Neural Network (TextRCNN) is applied to learn text information. For source code, we leverage its Code Property Graph (CPG) and extract key domain from it which are then embedded. Acquired feature vectors are then fed into Relational Graph Attention Network (RGAT). Result vectors gained from TextRCNN and RGAT are combined together as the feature vector of the current sample. A Multi-Layer Perceptron (MLP) layer is further added to undertake classification. We conduct our experiments on C/C++ projects from NVD. Experimental results show that our work achieves 84.49% in weighted F1-measure which proves our work to be more effective. Our work utilizes information reflected both from vulnerability descriptions and source code to facilitate vulnerability classification and achieves higher weighted F1-measure than existing vulnerability classification tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
16秒前
直率的青寒完成签到,获得积分10
34秒前
宝石完成签到,获得积分10
1分钟前
null应助ceeray23采纳,获得20
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
羞涩的傲菡完成签到,获得积分10
2分钟前
2分钟前
nssanc完成签到,获得积分10
2分钟前
linlinlin发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
FashionBoy应助linlinlin采纳,获得10
2分钟前
十一完成签到 ,获得积分10
3分钟前
QQWRV完成签到,获得积分10
3分钟前
3分钟前
CC发布了新的文献求助10
4分钟前
ceeray23发布了新的文献求助20
4分钟前
威武千青发布了新的文献求助20
4分钟前
4分钟前
Mrzrgh完成签到,获得积分10
5分钟前
钱邦国完成签到 ,获得积分10
5分钟前
小乐儿~完成签到,获得积分10
5分钟前
闪闪关注了科研通微信公众号
6分钟前
科研通AI6应助和谐小鸭子采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
袁青寒完成签到,获得积分10
6分钟前
keke发布了新的文献求助10
6分钟前
6分钟前
陈开发布了新的文献求助10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
星之所在应助ceeray23采纳,获得20
7分钟前
7分钟前
852应助Enso采纳,获得30
7分钟前
麻辣香锅发布了新的文献求助10
8分钟前
paradox完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707262
关于积分的说明 14938986
捐赠科研通 4769501
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475041