DeKeDVer: A deep learning-based multi-type software vulnerability classification framework using vulnerability description and source code

计算机科学 源代码 脆弱性(计算) 人工智能 分类器(UML) 机器学习 脆弱性评估 数据挖掘 计算机安全 程序设计语言 心理学 心理弹性 心理治疗师
作者
Yukun Dong,Yeer Tang,Xiaotong Cheng,Yufei Yang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:163: 107290-107290 被引量:3
标识
DOI:10.1016/j.infsof.2023.107290
摘要

Software vulnerabilities have confused software developers for a long time. Vulnerability classification is thus crucial, through which we can know the specific type of vulnerability and then conduct targeted repair. Stack of papers have looked into deep learning-based multi-type vulnerability classification, among which most are based on vulnerability descriptions and some are based on source code. While vulnerability descriptions can sometimes mislead vulnerability classification and source code-based approaches have been rarely explored in multi-type vulnerability classification. We design DeKeDVer (Vulnerability Descriptions and Key Domain based Vulnerability Classifier) with two objectives: (i) to extract more useful information from vulnerability descriptions; (ii) to better utilize the information source code can reflect. In this work, we propose a multi-type vulnerability classifier which combine vulnerability descriptions and source code together. We process vulnerability descriptions and source code of each project separately. For the vulnerability description of a sample, we preprocess it using a specified way we design based on our observations on numerous descriptions and then select text features. After that, Text Recurrent Convolutional Neural Network (TextRCNN) is applied to learn text information. For source code, we leverage its Code Property Graph (CPG) and extract key domain from it which are then embedded. Acquired feature vectors are then fed into Relational Graph Attention Network (RGAT). Result vectors gained from TextRCNN and RGAT are combined together as the feature vector of the current sample. A Multi-Layer Perceptron (MLP) layer is further added to undertake classification. We conduct our experiments on C/C++ projects from NVD. Experimental results show that our work achieves 84.49% in weighted F1-measure which proves our work to be more effective. Our work utilizes information reflected both from vulnerability descriptions and source code to facilitate vulnerability classification and achieves higher weighted F1-measure than existing vulnerability classification tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXR完成签到,获得积分10
1秒前
thchiang发布了新的文献求助10
2秒前
李健应助北城采纳,获得10
2秒前
WDK发布了新的文献求助10
2秒前
3秒前
轻松的贞发布了新的文献求助10
3秒前
医学生Mavis完成签到,获得积分10
5秒前
nextconnie完成签到,获得积分10
5秒前
汉堡包应助yyj采纳,获得10
6秒前
zqh740发布了新的文献求助30
7秒前
8秒前
NexusExplorer应助pharmstudent采纳,获得10
9秒前
熊遇蜜完成签到,获得积分10
11秒前
panzer完成签到,获得积分10
12秒前
13秒前
lyt发布了新的文献求助10
14秒前
六月毕业关注了科研通微信公众号
15秒前
petrichor应助程程采纳,获得10
16秒前
圆儿完成签到 ,获得积分10
16秒前
潇洒的灵萱完成签到,获得积分10
16秒前
16秒前
16秒前
Toooo完成签到,获得积分10
17秒前
zqh740完成签到,获得积分10
17秒前
科研通AI5应助thchiang采纳,获得10
17秒前
lizzzzzz完成签到,获得积分10
18秒前
yyj发布了新的文献求助10
18秒前
请和我吃饭完成签到,获得积分10
19秒前
北城发布了新的文献求助10
20秒前
勤恳冰淇淋完成签到 ,获得积分10
21秒前
23秒前
23秒前
清晏完成签到,获得积分10
24秒前
曲书文完成签到,获得积分10
25秒前
李瑞瑞发布了新的文献求助10
25秒前
5123完成签到,获得积分10
25秒前
勤劳落雁发布了新的文献求助10
25秒前
25秒前
28秒前
xuxu完成签到 ,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824