DeKeDVer: A deep learning-based multi-type software vulnerability classification framework using vulnerability description and source code

计算机科学 源代码 脆弱性(计算) 人工智能 分类器(UML) 机器学习 脆弱性评估 数据挖掘 计算机安全 程序设计语言 心理学 心理弹性 心理治疗师
作者
Yukun Dong,Yeer Tang,Xiaotong Cheng,Yufei Yang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:163: 107290-107290 被引量:3
标识
DOI:10.1016/j.infsof.2023.107290
摘要

Software vulnerabilities have confused software developers for a long time. Vulnerability classification is thus crucial, through which we can know the specific type of vulnerability and then conduct targeted repair. Stack of papers have looked into deep learning-based multi-type vulnerability classification, among which most are based on vulnerability descriptions and some are based on source code. While vulnerability descriptions can sometimes mislead vulnerability classification and source code-based approaches have been rarely explored in multi-type vulnerability classification. We design DeKeDVer (Vulnerability Descriptions and Key Domain based Vulnerability Classifier) with two objectives: (i) to extract more useful information from vulnerability descriptions; (ii) to better utilize the information source code can reflect. In this work, we propose a multi-type vulnerability classifier which combine vulnerability descriptions and source code together. We process vulnerability descriptions and source code of each project separately. For the vulnerability description of a sample, we preprocess it using a specified way we design based on our observations on numerous descriptions and then select text features. After that, Text Recurrent Convolutional Neural Network (TextRCNN) is applied to learn text information. For source code, we leverage its Code Property Graph (CPG) and extract key domain from it which are then embedded. Acquired feature vectors are then fed into Relational Graph Attention Network (RGAT). Result vectors gained from TextRCNN and RGAT are combined together as the feature vector of the current sample. A Multi-Layer Perceptron (MLP) layer is further added to undertake classification. We conduct our experiments on C/C++ projects from NVD. Experimental results show that our work achieves 84.49% in weighted F1-measure which proves our work to be more effective. Our work utilizes information reflected both from vulnerability descriptions and source code to facilitate vulnerability classification and achieves higher weighted F1-measure than existing vulnerability classification tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Geo_new发布了新的文献求助10
刚刚
蜉蝣发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
老北京完成签到,获得积分10
4秒前
111完成签到 ,获得积分10
4秒前
yan完成签到,获得积分20
4秒前
科研者发布了新的文献求助10
4秒前
4秒前
核桃应助科研通管家采纳,获得30
5秒前
子车茗应助科研通管家采纳,获得20
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
narcol发布了新的文献求助30
6秒前
Owen应助我我我采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
共享精神应助不知名网友采纳,获得10
7秒前
7秒前
8秒前
8秒前
yizhimcfu完成签到,获得积分10
8秒前
桃子完成签到,获得积分10
9秒前
16发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
小盆呐发布了新的文献求助10
12秒前
斯文败类应助LCY采纳,获得10
13秒前
13秒前
无极微光应助果冻采纳,获得20
13秒前
淡淡土豆应助蜉蝣采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513523
求助须知:如何正确求助?哪些是违规求助? 4607732
关于积分的说明 14506652
捐赠科研通 4543272
什么是DOI,文献DOI怎么找? 2489491
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447