清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeKeDVer: A deep learning-based multi-type software vulnerability classification framework using vulnerability description and source code

计算机科学 源代码 脆弱性(计算) 人工智能 分类器(UML) 机器学习 脆弱性评估 数据挖掘 计算机安全 程序设计语言 心理学 心理弹性 心理治疗师
作者
Yukun Dong,Yeer Tang,Xiaotong Cheng,Yufei Yang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:163: 107290-107290 被引量:3
标识
DOI:10.1016/j.infsof.2023.107290
摘要

Software vulnerabilities have confused software developers for a long time. Vulnerability classification is thus crucial, through which we can know the specific type of vulnerability and then conduct targeted repair. Stack of papers have looked into deep learning-based multi-type vulnerability classification, among which most are based on vulnerability descriptions and some are based on source code. While vulnerability descriptions can sometimes mislead vulnerability classification and source code-based approaches have been rarely explored in multi-type vulnerability classification. We design DeKeDVer (Vulnerability Descriptions and Key Domain based Vulnerability Classifier) with two objectives: (i) to extract more useful information from vulnerability descriptions; (ii) to better utilize the information source code can reflect. In this work, we propose a multi-type vulnerability classifier which combine vulnerability descriptions and source code together. We process vulnerability descriptions and source code of each project separately. For the vulnerability description of a sample, we preprocess it using a specified way we design based on our observations on numerous descriptions and then select text features. After that, Text Recurrent Convolutional Neural Network (TextRCNN) is applied to learn text information. For source code, we leverage its Code Property Graph (CPG) and extract key domain from it which are then embedded. Acquired feature vectors are then fed into Relational Graph Attention Network (RGAT). Result vectors gained from TextRCNN and RGAT are combined together as the feature vector of the current sample. A Multi-Layer Perceptron (MLP) layer is further added to undertake classification. We conduct our experiments on C/C++ projects from NVD. Experimental results show that our work achieves 84.49% in weighted F1-measure which proves our work to be more effective. Our work utilizes information reflected both from vulnerability descriptions and source code to facilitate vulnerability classification and achieves higher weighted F1-measure than existing vulnerability classification tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
FashionBoy应助舒适以松采纳,获得10
11秒前
搞怪莫茗发布了新的文献求助10
12秒前
不再挨训完成签到 ,获得积分10
20秒前
32秒前
斯尼奇完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
斯尼奇发布了新的文献求助10
37秒前
47秒前
52秒前
59秒前
Yjj发布了新的文献求助10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
田田完成签到 ,获得积分10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
包容的剑完成签到 ,获得积分10
1分钟前
Liufgui应助乏味采纳,获得30
2分钟前
量子星尘发布了新的文献求助30
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
舒适以松发布了新的文献求助10
2分钟前
3分钟前
饱满的新之完成签到 ,获得积分10
3分钟前
clock完成签到 ,获得积分10
3分钟前
huanghe完成签到,获得积分10
3分钟前
偷得浮生半日闲完成签到,获得积分10
3分钟前
3分钟前
球球应助Yjj采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
英俊的铭应助舒适以松采纳,获得10
3分钟前
11完成签到 ,获得积分10
3分钟前
3分钟前
舒适以松发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000