DeKeDVer: A deep learning-based multi-type software vulnerability classification framework using vulnerability description and source code

计算机科学 源代码 脆弱性(计算) 人工智能 分类器(UML) 机器学习 脆弱性评估 数据挖掘 计算机安全 程序设计语言 心理学 心理弹性 心理治疗师
作者
Yukun Dong,Yeer Tang,Xiaotong Cheng,Yufei Yang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:163: 107290-107290 被引量:3
标识
DOI:10.1016/j.infsof.2023.107290
摘要

Software vulnerabilities have confused software developers for a long time. Vulnerability classification is thus crucial, through which we can know the specific type of vulnerability and then conduct targeted repair. Stack of papers have looked into deep learning-based multi-type vulnerability classification, among which most are based on vulnerability descriptions and some are based on source code. While vulnerability descriptions can sometimes mislead vulnerability classification and source code-based approaches have been rarely explored in multi-type vulnerability classification. We design DeKeDVer (Vulnerability Descriptions and Key Domain based Vulnerability Classifier) with two objectives: (i) to extract more useful information from vulnerability descriptions; (ii) to better utilize the information source code can reflect. In this work, we propose a multi-type vulnerability classifier which combine vulnerability descriptions and source code together. We process vulnerability descriptions and source code of each project separately. For the vulnerability description of a sample, we preprocess it using a specified way we design based on our observations on numerous descriptions and then select text features. After that, Text Recurrent Convolutional Neural Network (TextRCNN) is applied to learn text information. For source code, we leverage its Code Property Graph (CPG) and extract key domain from it which are then embedded. Acquired feature vectors are then fed into Relational Graph Attention Network (RGAT). Result vectors gained from TextRCNN and RGAT are combined together as the feature vector of the current sample. A Multi-Layer Perceptron (MLP) layer is further added to undertake classification. We conduct our experiments on C/C++ projects from NVD. Experimental results show that our work achieves 84.49% in weighted F1-measure which proves our work to be more effective. Our work utilizes information reflected both from vulnerability descriptions and source code to facilitate vulnerability classification and achieves higher weighted F1-measure than existing vulnerability classification tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
潘三岁完成签到,获得积分20
2秒前
2秒前
希望天下0贩的0应助heroi采纳,获得10
3秒前
sb完成签到,获得积分10
4秒前
4秒前
科研通AI6应助无情的琳采纳,获得10
5秒前
CipherSage应助不知采纳,获得10
5秒前
wy完成签到,获得积分10
6秒前
6秒前
wanci应助自由妙竹采纳,获得10
7秒前
8秒前
9秒前
姜姜姜完成签到,获得积分10
9秒前
GM发布了新的文献求助10
9秒前
Criminology34应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
qigu发布了新的文献求助10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
枭声应助科研通管家采纳,获得10
11秒前
11秒前
HOAN应助科研通管家采纳,获得30
11秒前
开心的弱应助科研通管家采纳,获得30
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060