光子上转换
化学
兴奋剂
激活剂(遗传学)
离子
纳米颗粒
纳米技术
光电子学
材料科学
生物化学
有机化学
基因
作者
Ye Kuang,Dan Yang,Shili Gai,Fei He,Baichao An,Piaoping Yang
标识
DOI:10.1021/acs.inorgchem.3c01423
摘要
Agile and efficient upconversion luminescence (UCL) fine-tuning strategies are the most demanded for in the frontier applications of highly doped upconversion nanoparticles (UCNPs). By doping Zn2+ ions into NaHoF4 and NaGdF4:Yb3+ shells using the oleate method, the separate influences of Zn2+ on Ho3+ and Yb3+ ions in UCL-related processes were analyzed in detail, revealing relevant UCL changes and underlying energy mechanisms from a novel but explicit perspective. Different behaviors of green and red UCL before and after Zn2+-ion doping were attributed to the disparities in the energy pathways and features of the sample structures. Herein, the populations of 5S2/5F4 and 5F5 states, not the usually mentioned decay time, decided the UCL intensities of the NaHoF4@NaYbF4-structured highly doped UCNPs. The advantageous small sizes and intense single-band red UCL of these UCNPs were further developed by combining our previous strategies with introducing Zn2+ ions into the NaHoF4 matrix. Overcoming energy loss by surface quenchers and Zn2+-triggered inner defects is the key factor in maximizing 4f–4f transitions. To the best of our knowledge, the current study is the first attempt to date to experimentally reveal separate impacts of the heteroions on activators and sensitizers in UCL-related processes and can deepen the theoretical investigation of Ho-based UCL for the broadened applications of NaHoF4 UCNPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI