Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations

提前期 计算机科学 整数规划 合并(业务) 运筹学 固定成本 数学优化 网络规划与设计 最后一英里(运输) 线性规划 流量网络 启发式 英里 运营管理 计算机网络 工程类 业务 数学 天文 物理 会计 人工智能 算法
作者
Lacy M. Greening,Mathieu Dahan,Alan L. Erera
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:174: 102782-102782
标识
DOI:10.1016/j.trb.2023.102782
摘要

Many large e-commerce retailers move sufficient freight volumes to operate private middle-mile consolidation networks for order fulfillment, transporting customer shipments from stocking locations to last-mile delivery partners in consolidated loads to reduce freight costs. We study a middle-mile network design optimization problem with fixed origins and destinations to build load consolidation plans that minimize cost and satisfy customer shipment lead-time constraints. We propose models that extend traditional flat network service network design problems to capture waiting delays between load dispatches and ensure that shipment lead-time requirements are satisfied with a desired probability. We approximate these chance constraints using hyperparameterized linear constraints, resulting in new mixed-integer programs (MIPs) for service network design. To find high-quality solutions to the proposed MIPs, we develop an effective integer-programming-based local search (IPBLS) heuristic that iteratively improves a solution by optimizing over a smartly selected subset of commodities. For the largest problem instances, we propose a two-phase IPBLS heuristic that first utilizes a simplified, restricted MIP that constrains leg waiting delays individually. Computational experiments using data from a large U.S.-based e-commerce partner demonstrate the significant impact of tight lead-time constraints on the structure of the consolidation network designs and their concomitant operating costs. Notably, tighter constraints lead to solutions with increased shipment consolidation and higher dispatch frequencies on selected key transportation lanes. Such solutions trade off higher shipment transit times with significantly reduced shipment waiting times to meet lead-time constraints at lower cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助虚心海燕采纳,获得10
1秒前
sun发布了新的文献求助30
2秒前
2秒前
KBYer完成签到,获得积分10
2秒前
FashionBoy应助阳阳采纳,获得10
2秒前
许多知识发布了新的文献求助10
3秒前
苏源智完成签到,获得积分10
3秒前
Andy完成签到 ,获得积分10
5秒前
明理晓霜发布了新的文献求助10
7秒前
ZHANGMANLI0422关注了科研通微信公众号
7秒前
M先生发布了新的文献求助30
8秒前
FashionBoy应助许多知识采纳,获得10
9秒前
Poyd完成签到,获得积分10
12秒前
12秒前
故意的傲玉应助tao_blue采纳,获得10
13秒前
13秒前
kid1912完成签到,获得积分0
13秒前
小马甲应助一网小海蜇采纳,获得10
16秒前
专一的笑阳完成签到 ,获得积分10
16秒前
xuesensu完成签到 ,获得积分10
20秒前
豌豆完成签到,获得积分10
21秒前
M先生完成签到,获得积分10
21秒前
22秒前
24秒前
科研通AI5应助sun采纳,获得10
24秒前
shitzu完成签到 ,获得积分10
25秒前
choco发布了新的文献求助10
27秒前
28秒前
李健的小迷弟应助sun采纳,获得10
28秒前
Jzhang应助liyuchen采纳,获得10
28秒前
魏伯安发布了新的文献求助30
28秒前
jjjjjj发布了新的文献求助30
30秒前
31秒前
伯赏诗霜发布了新的文献求助10
31秒前
糟糕的鹏飞完成签到 ,获得积分10
32秒前
32秒前
欢呼凡旋完成签到,获得积分10
33秒前
韩邹光完成签到,获得积分10
35秒前
xg发布了新的文献求助10
35秒前
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849