Data-Driven Joint Fault Diagnosis Based on RMK-ASSA and DBSKNet for Blast Furnace Iron-Making Process

非线性系统 子空间拓扑 故障检测与隔离 算法 核主成分分析 核(代数) 计算机科学 模式识别(心理学) 人工智能 工程类 数学 支持向量机 核方法 物理 组合数学 执行机构 量子力学
作者
Siwei Lou,Chunjie Yang,Ping Wu,Yuelin Yang,Liyuan Kong,Xujie Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tase.2023.3287578
摘要

Blast furnace iron-making process (BFIP) is one of the most critical procedures in the iron and steel industry where timely detection and accurate classification of faults have always been of core focus. However, the coupling effects of system’s nonlinear and nonstationary characteristics often cause process consistent underlying information to be buried, allowing accurate extraction to be a significant challenge. This also complicates the development of BFIP fault diagnosis model. Therefore, we propose a novel data-driven joint fault diagnosis strategy that employs regularized mutual kernel analytic stationary subspace analysis (RMK-ASSA) and deep broad stationary kernel network (DBSKNet) to eliminate this interference. To develop this method, we first construct an RMK-ASSA approach to address the poor modeling accuracy caused by standard analytic stationary subspace analysis (ASSA)’s inability to handle complex process nonlinearity. Global and local kernels are utilized to account for multiple nonlinearities in BFIP data. The weight of different nonlinear data is calculated by regularized principal component analysis, and the main information is imported into ASSA to obtain more robust and accurate modeling results by eliminating the interference of redundant noise. Subsequently, we design a DBSKNet-based classifier to implement the fault diagnosis task. This network further considers the nonlinearity by boosting kernel structure in depth and width while distinguishing the respective contributions of different kernels to fault diagnosis results. Finally, a double-layer loop parameter optimization algorithm is used for optimizing. Simulated cases and practical BFIP tests validate that RMK-ASSA eliminates the negative impact caused by nonstationary data and that the proposed joint fault diagnosis strategy outperforms other methods. Note to Practitioners —BFIP’s nonlinear and nonstationary coupling properties pose unique challenges in eliminating distractions, constructing fault classifiers and accurately detecting process anomalies. To tackle these challenges, this paper proposes a joint fault diagnosis strategy based on RMK-ASSA and DBSKNet. RMK-ASSA effectively estimates nonlinear consistent features, while DBSKNet mines rich deep nonlinear information, accurately distinguishing variations in BFIP data under different working conditions. Experimental results demonstrate that this data-driven strategy can perform high-quality fault diagnosis, enabling field engineers to execute operations efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blackbody完成签到,获得积分10
刚刚
刚刚
Amanda完成签到,获得积分10
刚刚
兔兔兔兔t完成签到,获得积分10
刚刚
jike完成签到 ,获得积分10
刚刚
粒粒完成签到,获得积分10
1秒前
CodeCraft应助XHGG采纳,获得10
1秒前
1秒前
1秒前
不吃橘子完成签到,获得积分10
1秒前
painx完成签到,获得积分10
2秒前
我将以疾风形态出击完成签到,获得积分10
2秒前
2秒前
irenelijiaaa发布了新的文献求助10
2秒前
Tina完成签到,获得积分10
2秒前
2秒前
2秒前
Hollen完成签到 ,获得积分10
2秒前
马里奥完成签到,获得积分10
2秒前
2秒前
3秒前
zt发布了新的文献求助10
3秒前
舒心迎蕾发布了新的文献求助20
3秒前
3秒前
慕青应助帅气蓝采纳,获得10
3秒前
天天快乐应助小马采纳,获得10
4秒前
4秒前
现代的秋完成签到,获得积分10
4秒前
zhaoxi完成签到,获得积分10
4秒前
英吉利25发布了新的文献求助10
5秒前
水月完成签到,获得积分10
5秒前
Gurlstrian完成签到,获得积分10
5秒前
Migrol完成签到,获得积分10
5秒前
悄悄完成签到 ,获得积分10
5秒前
miao完成签到,获得积分10
6秒前
研友_VZG7GZ应助花痴的谷雪采纳,获得10
6秒前
sclai完成签到,获得积分10
6秒前
苹果河马完成签到,获得积分10
6秒前
哈哈发布了新的文献求助10
6秒前
江中发布了新的文献求助10
6秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659