Data-Driven Joint Fault Diagnosis Based on RMK-ASSA and DBSKNet for Blast Furnace Iron-Making Process

非线性系统 子空间拓扑 故障检测与隔离 算法 核主成分分析 核(代数) 计算机科学 模式识别(心理学) 人工智能 工程类 数学 支持向量机 核方法 物理 量子力学 组合数学 执行机构
作者
Siwei Lou,Chunjie Yang,Ping Wu,Yuelin Yang,Liyuan Kong,Xujie Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tase.2023.3287578
摘要

Blast furnace iron-making process (BFIP) is one of the most critical procedures in the iron and steel industry where timely detection and accurate classification of faults have always been of core focus. However, the coupling effects of system’s nonlinear and nonstationary characteristics often cause process consistent underlying information to be buried, allowing accurate extraction to be a significant challenge. This also complicates the development of BFIP fault diagnosis model. Therefore, we propose a novel data-driven joint fault diagnosis strategy that employs regularized mutual kernel analytic stationary subspace analysis (RMK-ASSA) and deep broad stationary kernel network (DBSKNet) to eliminate this interference. To develop this method, we first construct an RMK-ASSA approach to address the poor modeling accuracy caused by standard analytic stationary subspace analysis (ASSA)’s inability to handle complex process nonlinearity. Global and local kernels are utilized to account for multiple nonlinearities in BFIP data. The weight of different nonlinear data is calculated by regularized principal component analysis, and the main information is imported into ASSA to obtain more robust and accurate modeling results by eliminating the interference of redundant noise. Subsequently, we design a DBSKNet-based classifier to implement the fault diagnosis task. This network further considers the nonlinearity by boosting kernel structure in depth and width while distinguishing the respective contributions of different kernels to fault diagnosis results. Finally, a double-layer loop parameter optimization algorithm is used for optimizing. Simulated cases and practical BFIP tests validate that RMK-ASSA eliminates the negative impact caused by nonstationary data and that the proposed joint fault diagnosis strategy outperforms other methods. Note to Practitioners —BFIP’s nonlinear and nonstationary coupling properties pose unique challenges in eliminating distractions, constructing fault classifiers and accurately detecting process anomalies. To tackle these challenges, this paper proposes a joint fault diagnosis strategy based on RMK-ASSA and DBSKNet. RMK-ASSA effectively estimates nonlinear consistent features, while DBSKNet mines rich deep nonlinear information, accurately distinguishing variations in BFIP data under different working conditions. Experimental results demonstrate that this data-driven strategy can perform high-quality fault diagnosis, enabling field engineers to execute operations efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春风完成签到,获得积分20
刚刚
刚刚
杜青发布了新的文献求助10
1秒前
2秒前
2秒前
果果发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
yhy完成签到,获得积分10
4秒前
5秒前
迅速夏波完成签到,获得积分20
5秒前
6秒前
神勇冰淇淋完成签到,获得积分10
6秒前
orixero应助细心的岩采纳,获得10
7秒前
7秒前
thomas发布了新的文献求助10
8秒前
唐艺发布了新的文献求助10
8秒前
隐形曼青应助wang采纳,获得10
8秒前
张姣姣完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
ding应助贝利亚采纳,获得10
11秒前
generaliu发布了新的文献求助10
11秒前
qiu完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
舒适曼云完成签到,获得积分10
12秒前
玲子7发布了新的文献求助50
13秒前
14秒前
爱我不上火给爱我不上火的求助进行了留言
15秒前
高斯发布了新的文献求助10
15秒前
舒适曼云发布了新的文献求助10
16秒前
Owen应助qiu采纳,获得10
16秒前
Hathaway发布了新的文献求助10
17秒前
17秒前
迅速夏波发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788