Data-Driven Joint Fault Diagnosis Based on RMK-ASSA and DBSKNet for Blast Furnace Iron-Making Process

非线性系统 子空间拓扑 故障检测与隔离 算法 核主成分分析 核(代数) 计算机科学 模式识别(心理学) 人工智能 工程类 数学 支持向量机 核方法 物理 组合数学 执行机构 量子力学
作者
Siwei Lou,Chunjie Yang,Ping Wu,Yuelin Yang,Liyuan Kong,Xujie Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tase.2023.3287578
摘要

Blast furnace iron-making process (BFIP) is one of the most critical procedures in the iron and steel industry where timely detection and accurate classification of faults have always been of core focus. However, the coupling effects of system’s nonlinear and nonstationary characteristics often cause process consistent underlying information to be buried, allowing accurate extraction to be a significant challenge. This also complicates the development of BFIP fault diagnosis model. Therefore, we propose a novel data-driven joint fault diagnosis strategy that employs regularized mutual kernel analytic stationary subspace analysis (RMK-ASSA) and deep broad stationary kernel network (DBSKNet) to eliminate this interference. To develop this method, we first construct an RMK-ASSA approach to address the poor modeling accuracy caused by standard analytic stationary subspace analysis (ASSA)’s inability to handle complex process nonlinearity. Global and local kernels are utilized to account for multiple nonlinearities in BFIP data. The weight of different nonlinear data is calculated by regularized principal component analysis, and the main information is imported into ASSA to obtain more robust and accurate modeling results by eliminating the interference of redundant noise. Subsequently, we design a DBSKNet-based classifier to implement the fault diagnosis task. This network further considers the nonlinearity by boosting kernel structure in depth and width while distinguishing the respective contributions of different kernels to fault diagnosis results. Finally, a double-layer loop parameter optimization algorithm is used for optimizing. Simulated cases and practical BFIP tests validate that RMK-ASSA eliminates the negative impact caused by nonstationary data and that the proposed joint fault diagnosis strategy outperforms other methods. Note to Practitioners —BFIP’s nonlinear and nonstationary coupling properties pose unique challenges in eliminating distractions, constructing fault classifiers and accurately detecting process anomalies. To tackle these challenges, this paper proposes a joint fault diagnosis strategy based on RMK-ASSA and DBSKNet. RMK-ASSA effectively estimates nonlinear consistent features, while DBSKNet mines rich deep nonlinear information, accurately distinguishing variations in BFIP data under different working conditions. Experimental results demonstrate that this data-driven strategy can perform high-quality fault diagnosis, enabling field engineers to execute operations efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助无定采纳,获得10
刚刚
小不点完成签到,获得积分10
刚刚
1秒前
士载完成签到,获得积分10
1秒前
苏苏发布了新的文献求助10
1秒前
金蕊完成签到,获得积分10
2秒前
Owen应助可靠之玉采纳,获得10
2秒前
乔乔完成签到,获得积分10
2秒前
xuxuxuxuxu完成签到,获得积分10
4秒前
marson发布了新的文献求助10
4秒前
4秒前
桐桐应助微笑向卉采纳,获得10
4秒前
壮观听芹关注了科研通微信公众号
5秒前
科研通AI6应助nunup5采纳,获得10
5秒前
5秒前
guozizi驳回了Owen应助
5秒前
彭凯发布了新的文献求助20
6秒前
小硕土川完成签到,获得积分10
6秒前
sang发布了新的文献求助10
7秒前
Wei完成签到,获得积分10
8秒前
罗小马完成签到,获得积分10
9秒前
9秒前
凉城予梦完成签到,获得积分10
9秒前
挽风完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助100
9秒前
Koda完成签到,获得积分10
9秒前
9秒前
10秒前
marson完成签到,获得积分20
10秒前
龍焱完成签到,获得积分10
10秒前
美满雨莲完成签到,获得积分10
10秒前
洽洽瓜子shine完成签到,获得积分10
11秒前
小鹿完成签到 ,获得积分10
11秒前
慕青应助认真的谷蓝采纳,获得10
11秒前
11秒前
ypp完成签到,获得积分10
11秒前
浮游应助彭凯采纳,获得10
12秒前
Churchill87426完成签到,获得积分10
12秒前
科研通AI5应助材料生采纳,获得10
12秒前
九川发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723