亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Joint Fault Diagnosis Based on RMK-ASSA and DBSKNet for Blast Furnace Iron-Making Process

非线性系统 子空间拓扑 故障检测与隔离 算法 核主成分分析 核(代数) 计算机科学 模式识别(心理学) 人工智能 工程类 数学 支持向量机 核方法 物理 组合数学 执行机构 量子力学
作者
Siwei Lou,Chunjie Yang,Ping Wu,Yuelin Yang,Liyuan Kong,Xujie Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tase.2023.3287578
摘要

Blast furnace iron-making process (BFIP) is one of the most critical procedures in the iron and steel industry where timely detection and accurate classification of faults have always been of core focus. However, the coupling effects of system’s nonlinear and nonstationary characteristics often cause process consistent underlying information to be buried, allowing accurate extraction to be a significant challenge. This also complicates the development of BFIP fault diagnosis model. Therefore, we propose a novel data-driven joint fault diagnosis strategy that employs regularized mutual kernel analytic stationary subspace analysis (RMK-ASSA) and deep broad stationary kernel network (DBSKNet) to eliminate this interference. To develop this method, we first construct an RMK-ASSA approach to address the poor modeling accuracy caused by standard analytic stationary subspace analysis (ASSA)’s inability to handle complex process nonlinearity. Global and local kernels are utilized to account for multiple nonlinearities in BFIP data. The weight of different nonlinear data is calculated by regularized principal component analysis, and the main information is imported into ASSA to obtain more robust and accurate modeling results by eliminating the interference of redundant noise. Subsequently, we design a DBSKNet-based classifier to implement the fault diagnosis task. This network further considers the nonlinearity by boosting kernel structure in depth and width while distinguishing the respective contributions of different kernels to fault diagnosis results. Finally, a double-layer loop parameter optimization algorithm is used for optimizing. Simulated cases and practical BFIP tests validate that RMK-ASSA eliminates the negative impact caused by nonstationary data and that the proposed joint fault diagnosis strategy outperforms other methods. Note to Practitioners —BFIP’s nonlinear and nonstationary coupling properties pose unique challenges in eliminating distractions, constructing fault classifiers and accurately detecting process anomalies. To tackle these challenges, this paper proposes a joint fault diagnosis strategy based on RMK-ASSA and DBSKNet. RMK-ASSA effectively estimates nonlinear consistent features, while DBSKNet mines rich deep nonlinear information, accurately distinguishing variations in BFIP data under different working conditions. Experimental results demonstrate that this data-driven strategy can perform high-quality fault diagnosis, enabling field engineers to execute operations efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助DoggyBadiou采纳,获得30
1秒前
21秒前
雪中发布了新的文献求助10
1分钟前
1分钟前
一杯茶发布了新的文献求助10
1分钟前
完美世界应助雪中采纳,获得10
1分钟前
1分钟前
立恒儿发布了新的文献求助10
2分钟前
2分钟前
拓跋书芹发布了新的文献求助10
2分钟前
2分钟前
jyy应助拓跋书芹采纳,获得10
2分钟前
拓跋书芹完成签到,获得积分10
2分钟前
zhoup完成签到,获得积分20
2分钟前
krajicek完成签到,获得积分10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Umair完成签到,获得积分10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
排骨炖豆角完成签到 ,获得积分10
4分钟前
一杯茶发布了新的文献求助10
4分钟前
5分钟前
5分钟前
雪中发布了新的文献求助10
5分钟前
5分钟前
朱一龙发布了新的文献求助10
5分钟前
GHY339933发布了新的文献求助10
5分钟前
5分钟前
dr0422完成签到 ,获得积分10
5分钟前
Hello应助小小学神采纳,获得10
5分钟前
一杯茶发布了新的文献求助10
5分钟前
5分钟前
小小学神发布了新的文献求助10
5分钟前
英俊的铭应助否认冶游史采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
bukeshuo发布了新的文献求助10
6分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
2024 Medicinal Chemistry Reviews 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167162
求助须知:如何正确求助?哪些是违规求助? 2818660
关于积分的说明 7921824
捐赠科研通 2478354
什么是DOI,文献DOI怎么找? 1320299
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438