Data-Driven Joint Fault Diagnosis Based on RMK-ASSA and DBSKNet for Blast Furnace Iron-Making Process

非线性系统 子空间拓扑 故障检测与隔离 算法 核主成分分析 核(代数) 计算机科学 模式识别(心理学) 人工智能 工程类 数学 支持向量机 核方法 物理 组合数学 执行机构 量子力学
作者
Siwei Lou,Chunjie Yang,Ping Wu,Yuelin Yang,Liyuan Kong,Xujie Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tase.2023.3287578
摘要

Blast furnace iron-making process (BFIP) is one of the most critical procedures in the iron and steel industry where timely detection and accurate classification of faults have always been of core focus. However, the coupling effects of system’s nonlinear and nonstationary characteristics often cause process consistent underlying information to be buried, allowing accurate extraction to be a significant challenge. This also complicates the development of BFIP fault diagnosis model. Therefore, we propose a novel data-driven joint fault diagnosis strategy that employs regularized mutual kernel analytic stationary subspace analysis (RMK-ASSA) and deep broad stationary kernel network (DBSKNet) to eliminate this interference. To develop this method, we first construct an RMK-ASSA approach to address the poor modeling accuracy caused by standard analytic stationary subspace analysis (ASSA)’s inability to handle complex process nonlinearity. Global and local kernels are utilized to account for multiple nonlinearities in BFIP data. The weight of different nonlinear data is calculated by regularized principal component analysis, and the main information is imported into ASSA to obtain more robust and accurate modeling results by eliminating the interference of redundant noise. Subsequently, we design a DBSKNet-based classifier to implement the fault diagnosis task. This network further considers the nonlinearity by boosting kernel structure in depth and width while distinguishing the respective contributions of different kernels to fault diagnosis results. Finally, a double-layer loop parameter optimization algorithm is used for optimizing. Simulated cases and practical BFIP tests validate that RMK-ASSA eliminates the negative impact caused by nonstationary data and that the proposed joint fault diagnosis strategy outperforms other methods. Note to Practitioners —BFIP’s nonlinear and nonstationary coupling properties pose unique challenges in eliminating distractions, constructing fault classifiers and accurately detecting process anomalies. To tackle these challenges, this paper proposes a joint fault diagnosis strategy based on RMK-ASSA and DBSKNet. RMK-ASSA effectively estimates nonlinear consistent features, while DBSKNet mines rich deep nonlinear information, accurately distinguishing variations in BFIP data under different working conditions. Experimental results demonstrate that this data-driven strategy can perform high-quality fault diagnosis, enabling field engineers to execute operations efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助稀里哗啦采纳,获得10
刚刚
Frank应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
嘻嘻哈哈应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
只A不B应助科研通管家采纳,获得10
1秒前
ding应助老实的孤丹采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
iNk应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Zx_1993应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
2秒前
RAISONitz发布了新的文献求助10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
SCI应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
komorebi发布了新的文献求助10
2秒前
犹豫奇迹完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869