TransMatch: A Transformer-Based Multilevel Dual-Stream Feature Matching Network for Unsupervised Deformable Image Registration

计算机科学 人工智能 图像配准 模式识别(心理学) 特征提取 匹配(统计) 特征(语言学) 体素 计算机视觉 图像(数学) 数学 语言学 统计 哲学
作者
Zeyuan Chen,Yuanjie Zheng,James C. Gee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 15-27 被引量:120
标识
DOI:10.1109/tmi.2023.3288136
摘要

Feature matching, which refers to establishing the correspondence of regions between two images (usually voxel features), is a crucial prerequisite of feature-based registration. For deformable image registration tasks, traditional feature-based registration methods typically use an iterative matching strategy for interest region matching, where feature selection and matching are explicit, but specific feature selection schemes are often useful in solving application-specific problems and require several minutes for each registration. In the past few years, the feasibility of learning-based methods, such as VoxelMorph and TransMorph, has been proven, and their performance has been shown to be competitive compared to traditional methods. However, these methods are usually single-stream, where the two images to be registered are concatenated into a 2-channel whole, and then the deformation field is output directly. The transformation of image features into interimage matching relationships is implicit. In this paper, we propose a novel end-to-end dual-stream unsupervised framework, named TransMatch, where each image is fed into a separate stream branch, and each branch performs feature extraction independently. Then, we implement explicit multilevel feature matching between image pairs via the query-key matching idea of the self-attention mechanism in the Transformer model. Comprehensive experiments are conducted on three 3D brain MR datasets, LPBA40, IXI, and OASIS, and the results show that the proposed method achieves state-of-the-art performance in several evaluation metrics compared to the commonly utilized registration methods, including SyN, NiftyReg, VoxelMorph, CycleMorph, ViT-V-Net, and TransMorph, demonstrating the effectiveness of our model in deformable medical image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研澄澄完成签到,获得积分10
刚刚
1秒前
大白发布了新的文献求助10
1秒前
夜神月完成签到,获得积分10
1秒前
hunzizzzzz发布了新的文献求助10
1秒前
gggggs发布了新的文献求助10
1秒前
顾化蛹完成签到,获得积分10
1秒前
1秒前
shen发布了新的文献求助10
2秒前
2秒前
Richard完成签到 ,获得积分20
2秒前
2秒前
飞0802完成签到,获得积分10
2秒前
yidashi完成签到,获得积分10
3秒前
甜甜又亦完成签到,获得积分10
3秒前
Baituole77发布了新的文献求助10
3秒前
等一个晴天完成签到,获得积分10
4秒前
jinzhituoyan完成签到,获得积分10
4秒前
Neil完成签到,获得积分10
4秒前
平常澜发布了新的文献求助10
4秒前
甜蜜绿柏发布了新的文献求助10
4秒前
吃了就睡完成签到,获得积分10
4秒前
雪白煜城完成签到,获得积分10
4秒前
大江流完成签到,获得积分10
5秒前
江舟添盛望完成签到,获得积分10
6秒前
6秒前
小白应助大帅哲采纳,获得10
6秒前
充电宝应助大帅哲采纳,获得10
6秒前
chenhua5460发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
祖诗云完成签到,获得积分10
7秒前
17完成签到,获得积分10
7秒前
幸福的涵阳完成签到 ,获得积分20
7秒前
8秒前
朱大头完成签到,获得积分10
8秒前
充电宝应助demia采纳,获得10
8秒前
hunzizzzzz完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585102
求助须知:如何正确求助?哪些是违规求助? 4668911
关于积分的说明 14773285
捐赠科研通 4616847
什么是DOI,文献DOI怎么找? 2530348
邀请新用户注册赠送积分活动 1499135
关于科研通互助平台的介绍 1467659