已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TransMatch: A Transformer-Based Multilevel Dual-Stream Feature Matching Network for Unsupervised Deformable Image Registration

计算机科学 人工智能 图像配准 模式识别(心理学) 特征提取 匹配(统计) 特征(语言学) 体素 计算机视觉 图像(数学) 数学 语言学 统计 哲学
作者
Zeyuan Chen,Yuanjie Zheng,James C. Gee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 15-27 被引量:37
标识
DOI:10.1109/tmi.2023.3288136
摘要

Feature matching, which refers to establishing the correspondence of regions between two images (usually voxel features), is a crucial prerequisite of feature-based registration. For deformable image registration tasks, traditional feature-based registration methods typically use an iterative matching strategy for interest region matching, where feature selection and matching are explicit, but specific feature selection schemes are often useful in solving application-specific problems and require several minutes for each registration. In the past few years, the feasibility of learning-based methods, such as VoxelMorph and TransMorph, has been proven, and their performance has been shown to be competitive compared to traditional methods. However, these methods are usually single-stream, where the two images to be registered are concatenated into a 2-channel whole, and then the deformation field is output directly. The transformation of image features into interimage matching relationships is implicit. In this paper, we propose a novel end-to-end dual-stream unsupervised framework, named TransMatch, where each image is fed into a separate stream branch, and each branch performs feature extraction independently. Then, we implement explicit multilevel feature matching between image pairs via the query-key matching idea of the self-attention mechanism in the Transformer model. Comprehensive experiments are conducted on three 3D brain MR datasets, LPBA40, IXI, and OASIS, and the results show that the proposed method achieves state-of-the-art performance in several evaluation metrics compared to the commonly utilized registration methods, including SyN, NiftyReg, VoxelMorph, CycleMorph, ViT-V-Net, and TransMorph, demonstrating the effectiveness of our model in deformable medical image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助张凯采纳,获得10
1秒前
Ericlee完成签到,获得积分20
2秒前
zzzz应助不吃可可采纳,获得10
3秒前
七七完成签到,获得积分10
5秒前
7秒前
潇潇完成签到 ,获得积分10
8秒前
科研螺丝完成签到 ,获得积分10
8秒前
l1完成签到,获得积分10
9秒前
罗伯特完成签到,获得积分10
10秒前
11秒前
fly发布了新的文献求助10
12秒前
12秒前
minya完成签到,获得积分10
14秒前
breeze发布了新的文献求助10
17秒前
哭泣的丝完成签到 ,获得积分10
20秒前
BA1完成签到,获得积分10
25秒前
26秒前
26秒前
Ec_w完成签到 ,获得积分10
27秒前
Edinburgh发布了新的文献求助10
30秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
杳鸢应助科研通管家采纳,获得30
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得20
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
33秒前
小田完成签到,获得积分10
33秒前
Edinburgh完成签到,获得积分10
37秒前
复杂静竹发布了新的文献求助10
39秒前
林狗发布了新的文献求助10
41秒前
huhutu完成签到 ,获得积分10
44秒前
47秒前
林狗完成签到,获得积分10
50秒前
石中酒完成签到 ,获得积分10
51秒前
52秒前
现代水蓉完成签到 ,获得积分10
52秒前
晴qing完成签到,获得积分10
54秒前
科研通AI2S应助淼焱采纳,获得10
59秒前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268517
求助须知:如何正确求助?哪些是违规求助? 2908048
关于积分的说明 8344221
捐赠科研通 2578335
什么是DOI,文献DOI怎么找? 1401979
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634372