TransMatch: A Transformer-Based Multilevel Dual-Stream Feature Matching Network for Unsupervised Deformable Image Registration

计算机科学 人工智能 图像配准 模式识别(心理学) 特征提取 匹配(统计) 特征(语言学) 体素 计算机视觉 图像(数学) 数学 语言学 统计 哲学
作者
Zeyuan Chen,Yuanjie Zheng,James C. Gee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 15-27 被引量:120
标识
DOI:10.1109/tmi.2023.3288136
摘要

Feature matching, which refers to establishing the correspondence of regions between two images (usually voxel features), is a crucial prerequisite of feature-based registration. For deformable image registration tasks, traditional feature-based registration methods typically use an iterative matching strategy for interest region matching, where feature selection and matching are explicit, but specific feature selection schemes are often useful in solving application-specific problems and require several minutes for each registration. In the past few years, the feasibility of learning-based methods, such as VoxelMorph and TransMorph, has been proven, and their performance has been shown to be competitive compared to traditional methods. However, these methods are usually single-stream, where the two images to be registered are concatenated into a 2-channel whole, and then the deformation field is output directly. The transformation of image features into interimage matching relationships is implicit. In this paper, we propose a novel end-to-end dual-stream unsupervised framework, named TransMatch, where each image is fed into a separate stream branch, and each branch performs feature extraction independently. Then, we implement explicit multilevel feature matching between image pairs via the query-key matching idea of the self-attention mechanism in the Transformer model. Comprehensive experiments are conducted on three 3D brain MR datasets, LPBA40, IXI, and OASIS, and the results show that the proposed method achieves state-of-the-art performance in several evaluation metrics compared to the commonly utilized registration methods, including SyN, NiftyReg, VoxelMorph, CycleMorph, ViT-V-Net, and TransMorph, demonstrating the effectiveness of our model in deformable medical image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远不止这些完成签到,获得积分20
刚刚
刚刚
不吃鱼发布了新的文献求助10
刚刚
调皮的巧凡完成签到,获得积分10
刚刚
刚刚
HY完成签到 ,获得积分10
刚刚
claud完成签到 ,获得积分10
1秒前
1秒前
1秒前
潘潘完成签到,获得积分10
1秒前
1秒前
赵寒迟完成签到 ,获得积分10
2秒前
2秒前
是个土土发布了新的文献求助10
2秒前
3秒前
呵呵禾完成签到,获得积分10
3秒前
王一鸣发布了新的文献求助10
3秒前
3秒前
CodeCraft应助太阳能之子采纳,获得10
3秒前
WYN发布了新的文献求助10
4秒前
4秒前
4秒前
云不暇完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
叶小明2565完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
丘比特应助学者采纳,获得10
6秒前
6秒前
6秒前
6秒前
搜集达人应助andy采纳,获得10
6秒前
7秒前
7秒前
千宝发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767