TransMatch: A Transformer-Based Multilevel Dual-Stream Feature Matching Network for Unsupervised Deformable Image Registration

计算机科学 人工智能 图像配准 模式识别(心理学) 特征提取 匹配(统计) 特征(语言学) 体素 计算机视觉 图像(数学) 数学 语言学 统计 哲学
作者
Zeyuan Chen,Yuanjie Zheng,James C. Gee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 15-27 被引量:61
标识
DOI:10.1109/tmi.2023.3288136
摘要

Feature matching, which refers to establishing the correspondence of regions between two images (usually voxel features), is a crucial prerequisite of feature-based registration. For deformable image registration tasks, traditional feature-based registration methods typically use an iterative matching strategy for interest region matching, where feature selection and matching are explicit, but specific feature selection schemes are often useful in solving application-specific problems and require several minutes for each registration. In the past few years, the feasibility of learning-based methods, such as VoxelMorph and TransMorph, has been proven, and their performance has been shown to be competitive compared to traditional methods. However, these methods are usually single-stream, where the two images to be registered are concatenated into a 2-channel whole, and then the deformation field is output directly. The transformation of image features into interimage matching relationships is implicit. In this paper, we propose a novel end-to-end dual-stream unsupervised framework, named TransMatch, where each image is fed into a separate stream branch, and each branch performs feature extraction independently. Then, we implement explicit multilevel feature matching between image pairs via the query-key matching idea of the self-attention mechanism in the Transformer model. Comprehensive experiments are conducted on three 3D brain MR datasets, LPBA40, IXI, and OASIS, and the results show that the proposed method achieves state-of-the-art performance in several evaluation metrics compared to the commonly utilized registration methods, including SyN, NiftyReg, VoxelMorph, CycleMorph, ViT-V-Net, and TransMorph, demonstrating the effectiveness of our model in deformable medical image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盛景洲发布了新的文献求助10
刚刚
今天发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
舒适一手发布了新的文献求助10
3秒前
Xuan完成签到,获得积分10
3秒前
xiaodong发布了新的文献求助10
3秒前
詹雪晴发布了新的文献求助10
4秒前
负责石头完成签到,获得积分10
4秒前
金荣发布了新的文献求助40
5秒前
5秒前
5秒前
5秒前
Jasper应助Dr.coco采纳,获得10
5秒前
科研通AI5应助qzp采纳,获得10
5秒前
奇怪的柒发布了新的文献求助10
6秒前
Xuan发布了新的文献求助10
6秒前
仙贝完成签到,获得积分10
7秒前
沉默无极完成签到,获得积分10
7秒前
JamesPei应助hhh采纳,获得10
7秒前
康康完成签到 ,获得积分20
8秒前
8秒前
充电宝应助加贝峥采纳,获得10
8秒前
8秒前
赘婿应助乌冬面采纳,获得10
9秒前
9秒前
mika发布了新的文献求助10
10秒前
万能图书馆应助万信心采纳,获得10
10秒前
11秒前
11秒前
11秒前
思源应助盛景洲采纳,获得10
12秒前
NexusExplorer应助徐昊雯采纳,获得10
13秒前
杰行天下完成签到,获得积分10
13秒前
詹雪晴完成签到,获得积分20
13秒前
14秒前
SciGPT应助面缺陷采纳,获得10
14秒前
海心发布了新的文献求助30
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646