已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TransMatch: A Transformer-Based Multilevel Dual-Stream Feature Matching Network for Unsupervised Deformable Image Registration

计算机科学 人工智能 图像配准 模式识别(心理学) 特征提取 匹配(统计) 特征(语言学) 体素 计算机视觉 图像(数学) 数学 语言学 统计 哲学
作者
Zeyuan Chen,Yuanjie Zheng,James C. Gee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 15-27 被引量:61
标识
DOI:10.1109/tmi.2023.3288136
摘要

Feature matching, which refers to establishing the correspondence of regions between two images (usually voxel features), is a crucial prerequisite of feature-based registration. For deformable image registration tasks, traditional feature-based registration methods typically use an iterative matching strategy for interest region matching, where feature selection and matching are explicit, but specific feature selection schemes are often useful in solving application-specific problems and require several minutes for each registration. In the past few years, the feasibility of learning-based methods, such as VoxelMorph and TransMorph, has been proven, and their performance has been shown to be competitive compared to traditional methods. However, these methods are usually single-stream, where the two images to be registered are concatenated into a 2-channel whole, and then the deformation field is output directly. The transformation of image features into interimage matching relationships is implicit. In this paper, we propose a novel end-to-end dual-stream unsupervised framework, named TransMatch, where each image is fed into a separate stream branch, and each branch performs feature extraction independently. Then, we implement explicit multilevel feature matching between image pairs via the query-key matching idea of the self-attention mechanism in the Transformer model. Comprehensive experiments are conducted on three 3D brain MR datasets, LPBA40, IXI, and OASIS, and the results show that the proposed method achieves state-of-the-art performance in several evaluation metrics compared to the commonly utilized registration methods, including SyN, NiftyReg, VoxelMorph, CycleMorph, ViT-V-Net, and TransMorph, demonstrating the effectiveness of our model in deformable medical image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
wxyshare给茁芽的求助进行了留言
3秒前
蔡从安发布了新的文献求助10
3秒前
Thien发布了新的文献求助10
3秒前
张张张xxx发布了新的文献求助10
3秒前
思源应助wop111采纳,获得10
3秒前
3秒前
FashionBoy应助dates2008采纳,获得10
4秒前
Thien发布了新的文献求助10
4秒前
6秒前
Thien发布了新的文献求助10
6秒前
yufei发布了新的文献求助10
7秒前
ofa完成签到,获得积分10
7秒前
slokni发布了新的文献求助10
9秒前
9秒前
大气的苠完成签到,获得积分10
9秒前
拼搏秋应助浮浮世世采纳,获得10
9秒前
9秒前
大辣娇完成签到 ,获得积分10
10秒前
10秒前
yy完成签到 ,获得积分10
12秒前
12秒前
可爱的函函应助晓晓马儿采纳,获得10
12秒前
13秒前
13秒前
yy发布了新的文献求助10
15秒前
ding应助wwwww采纳,获得30
15秒前
大辣娇关注了科研通微信公众号
16秒前
17秒前
18秒前
勤奋流沙完成签到 ,获得积分10
19秒前
软糖完成签到 ,获得积分10
20秒前
suer完成签到 ,获得积分10
20秒前
追寻的沛白完成签到,获得积分10
21秒前
md2356发布了新的文献求助10
22秒前
auraro完成签到 ,获得积分10
23秒前
Tan完成签到 ,获得积分10
23秒前
yqb发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006228
求助须知:如何正确求助?哪些是违规求助? 4249664
关于积分的说明 13241677
捐赠科研通 4049569
什么是DOI,文献DOI怎么找? 2215369
邀请新用户注册赠送积分活动 1225310
关于科研通互助平台的介绍 1145875