Multimodal Vehicular Trajectory Prediction With Inverse Reinforcement Learning and Risk Aversion at Urban Unsignalized Intersections

弹道 计算机科学 强化学习 人工智能 工程类 运输工程 物理 天文
作者
Maosi Geng,Zeen Cai,Yizhang Zhu,Xiqun Chen,Der‐Horng Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12227-12240 被引量:10
标识
DOI:10.1109/tits.2023.3285891
摘要

Understanding human drivers' intentions and predicting their future motions are significant to connected and autonomous vehicles and traffic safety and surveillance systems. Predicting multimodal vehicular trajectories at urban unsignalized intersections remains challenging due to dynamic traffic flow and uncertainty of human drivers' maneuvers. In this paper, we propose a comprehensive trajectory prediction framework that combines a multimodal trajectory generation network with inverse reinforcement learning (IRL) and risk aversion (RA) modules. Specifically, we first construct a multimodal spatial-temporal Transformer network (mmSTTN) to generate multiple trajectory candidates, using trajectory coordinates as inputs. Accounting for spatio-temporal features, we formulate the IRL reward function for evaluating all candidate trajectories. The optimal trajectory is then selected based on the computed rewards, a process that mimics human drivers' decision-making. We further develop the RA module based on the driving risk field for optimal risk-averse trajectory prediction. We conduct experiments and ablation studies using the inD dataset at an urban unsignalized intersection, demonstrating impressive human trajectory alignment, prediction accuracy, and the ability to generate risk-averse trajectories. Our proposed framework reduces prediction errors and driving risks by 25% and 30% compared to baseline methods. Results validate vehicles' human-like risk-averse diverging-and-concentrating behavior as they traverse the intersection. The proposed framework presents a novel approach for forecasting multimodal vehicular trajectories by imitating human drivers and incorporating physics-based risk information derived from the driving field. This research offers a promising direction for enhancing the safety and efficiency of connected and autonomous vehicles navigating urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
JOEY发布了新的文献求助10
刚刚
kai发布了新的文献求助30
刚刚
1秒前
1秒前
烟花应助某某某采纳,获得10
1秒前
无花果应助某某某采纳,获得10
1秒前
烟花应助某某某采纳,获得10
1秒前
乐乐应助某某某采纳,获得10
1秒前
彭于晏应助某某某采纳,获得10
1秒前
listener应助某某某采纳,获得10
1秒前
嗯哼应助某某某采纳,获得10
1秒前
罗_应助某某某采纳,获得10
2秒前
supertkeb应助某某某采纳,获得10
2秒前
所所应助某某某采纳,获得10
2秒前
田様应助三泥采纳,获得10
2秒前
调研昵称发布了新的文献求助10
2秒前
苞米公主发布了新的文献求助10
2秒前
慧慧发布了新的文献求助10
3秒前
Michael完成签到,获得积分20
4秒前
善学以致用应助沉静的松采纳,获得10
5秒前
yuki发布了新的文献求助10
5秒前
韵寒禾香发布了新的文献求助10
5秒前
斯文败类应助853225598采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
李健的小迷弟应助尹依依采纳,获得10
6秒前
6秒前
kamola0807发布了新的文献求助10
7秒前
Yancent应助ark861023采纳,获得10
7秒前
8秒前
8秒前
英姑应助江海客采纳,获得10
8秒前
陌路孤星完成签到,获得积分10
8秒前
9秒前
ACOY应助没有感情的PCR仪采纳,获得10
9秒前
10秒前
慧慧完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304868
求助须知:如何正确求助?哪些是违规求助? 2938834
关于积分的说明 8490078
捐赠科研通 2613283
什么是DOI,文献DOI怎么找? 1427315
科研通“疑难数据库(出版商)”最低求助积分说明 662925
邀请新用户注册赠送积分活动 647557