Multimodal Vehicular Trajectory Prediction With Inverse Reinforcement Learning and Risk Aversion at Urban Unsignalized Intersections

弹道 计算机科学 强化学习 人工智能 工程类 运输工程 物理 天文
作者
Maosi Geng,Zeen Cai,Yizhang Zhu,Xiqun Chen,Der‐Horng Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12227-12240 被引量:10
标识
DOI:10.1109/tits.2023.3285891
摘要

Understanding human drivers' intentions and predicting their future motions are significant to connected and autonomous vehicles and traffic safety and surveillance systems. Predicting multimodal vehicular trajectories at urban unsignalized intersections remains challenging due to dynamic traffic flow and uncertainty of human drivers' maneuvers. In this paper, we propose a comprehensive trajectory prediction framework that combines a multimodal trajectory generation network with inverse reinforcement learning (IRL) and risk aversion (RA) modules. Specifically, we first construct a multimodal spatial-temporal Transformer network (mmSTTN) to generate multiple trajectory candidates, using trajectory coordinates as inputs. Accounting for spatio-temporal features, we formulate the IRL reward function for evaluating all candidate trajectories. The optimal trajectory is then selected based on the computed rewards, a process that mimics human drivers' decision-making. We further develop the RA module based on the driving risk field for optimal risk-averse trajectory prediction. We conduct experiments and ablation studies using the inD dataset at an urban unsignalized intersection, demonstrating impressive human trajectory alignment, prediction accuracy, and the ability to generate risk-averse trajectories. Our proposed framework reduces prediction errors and driving risks by 25% and 30% compared to baseline methods. Results validate vehicles' human-like risk-averse diverging-and-concentrating behavior as they traverse the intersection. The proposed framework presents a novel approach for forecasting multimodal vehicular trajectories by imitating human drivers and incorporating physics-based risk information derived from the driving field. This research offers a promising direction for enhancing the safety and efficiency of connected and autonomous vehicles navigating urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
actor2006完成签到,获得积分10
刚刚
zhaxiao完成签到,获得积分10
刚刚
刚刚
希望天下0贩的0应助淘淘采纳,获得10
刚刚
冰火油条虾完成签到,获得积分10
刚刚
陈逸恒发布了新的文献求助10
刚刚
大红完成签到,获得积分10
刚刚
爆米花应助应天亦采纳,获得10
1秒前
善学以致用应助echooooo采纳,获得10
1秒前
墨卿完成签到,获得积分10
1秒前
uraylong发布了新的文献求助10
2秒前
3秒前
达达利亚完成签到,获得积分10
3秒前
111发布了新的文献求助30
3秒前
ponytail完成签到,获得积分10
4秒前
榕小蜂完成签到 ,获得积分10
4秒前
4秒前
5秒前
wdy111应助Mila采纳,获得20
5秒前
hahhh7发布了新的文献求助10
5秒前
5秒前
科研通AI5应助huyuan采纳,获得10
6秒前
冰西瓜完成签到 ,获得积分0
6秒前
酱啊油完成签到,获得积分10
6秒前
charles发布了新的文献求助10
8秒前
LYL2003完成签到,获得积分10
8秒前
1231完成签到,获得积分10
8秒前
9秒前
大气的天蓝完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
白鸢发布了新的文献求助10
10秒前
有趣的灵魂完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653