Multimodal Vehicular Trajectory Prediction With Inverse Reinforcement Learning and Risk Aversion at Urban Unsignalized Intersections

弹道 计算机科学 强化学习 人工智能 工程类 运输工程 物理 天文
作者
Maosi Geng,Zeen Cai,Yizhang Zhu,Xiqun Chen,Der‐Horng Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12227-12240 被引量:10
标识
DOI:10.1109/tits.2023.3285891
摘要

Understanding human drivers' intentions and predicting their future motions are significant to connected and autonomous vehicles and traffic safety and surveillance systems. Predicting multimodal vehicular trajectories at urban unsignalized intersections remains challenging due to dynamic traffic flow and uncertainty of human drivers' maneuvers. In this paper, we propose a comprehensive trajectory prediction framework that combines a multimodal trajectory generation network with inverse reinforcement learning (IRL) and risk aversion (RA) modules. Specifically, we first construct a multimodal spatial-temporal Transformer network (mmSTTN) to generate multiple trajectory candidates, using trajectory coordinates as inputs. Accounting for spatio-temporal features, we formulate the IRL reward function for evaluating all candidate trajectories. The optimal trajectory is then selected based on the computed rewards, a process that mimics human drivers' decision-making. We further develop the RA module based on the driving risk field for optimal risk-averse trajectory prediction. We conduct experiments and ablation studies using the inD dataset at an urban unsignalized intersection, demonstrating impressive human trajectory alignment, prediction accuracy, and the ability to generate risk-averse trajectories. Our proposed framework reduces prediction errors and driving risks by 25% and 30% compared to baseline methods. Results validate vehicles' human-like risk-averse diverging-and-concentrating behavior as they traverse the intersection. The proposed framework presents a novel approach for forecasting multimodal vehicular trajectories by imitating human drivers and incorporating physics-based risk information derived from the driving field. This research offers a promising direction for enhancing the safety and efficiency of connected and autonomous vehicles navigating urban environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王冬越完成签到 ,获得积分10
刚刚
赘婿应助Survivor采纳,获得10
1秒前
2秒前
2秒前
fangyuan应助科研通管家采纳,获得10
2秒前
Return应助科研通管家采纳,获得10
2秒前
tiptip应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
ht完成签到,获得积分10
5秒前
5秒前
科研通AI6应助杨文彬采纳,获得10
6秒前
6秒前
6秒前
7秒前
______完成签到,获得积分10
7秒前
迷路雨寒发布了新的文献求助10
8秒前
8秒前
WGS发布了新的文献求助10
9秒前
禾火发布了新的文献求助10
9秒前
10秒前
10秒前
薛变霞发布了新的文献求助10
11秒前
11秒前
zhiqq发布了新的文献求助10
13秒前
14秒前
SciGPT应助qingjiu采纳,获得10
14秒前
一星如月发布了新的文献求助10
14秒前
15秒前
15秒前
dw发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661