Exploring the Applicability of Spectral Recovery in Semantic Segmentation of RGB Images

计算机科学 RGB颜色模型 分割 高光谱成像 人工智能 像素 计算机视觉 光谱带 模式识别(心理学) 图像分割 过程(计算) 遥感 地质学 操作系统
作者
Zhuoran Du,Shikui Wei,Ting Liu,Shunli Zhang,Xiaotong Chen,Shiyin Zhang,Yao Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1932-1943
标识
DOI:10.1109/tmm.2023.3290426
摘要

Compared with RGB images, hyperspectral images (HSIs) offer a distinct advantage in that they can record continuous spectral bands of light reflectance in each pixel, reflecting the physical and chemical characteristics of materials. This capability enables differentiation between objects that may have similar textures but different spectral characteristics. It is desirable to recover spectral information from RGB images to improve semantic segmentation accuracy. Additionally, semantic information can serve as a guide for spectral information recovery, thereby ensuring the quality of the recovered spectral information. The two tasks are mutually beneficial in this regard. In light of these considerations, we propose a multi-task framework that exploits the complementary relationship between spectral recovery and semantic segmentation tasks, comprising a complementary spectral-semantic attentive fusion model (CSSF) that enables the two tasks to mutually facilitate each other by fusing information from both branches. Specifically, the proposed CSSF incorporates a window-based spectral-semantic attentive fusion (WSSAF) module to incorporate recovered spectral information into the segmentation process effectively, and a pixel-shuffle-based fusion (PSF) module to provide semantic guidance for spectral recovery. To evaluate the effectiveness of our approach, we built the first flower hyperspectral image dataset (FHRS) with corresponding segmentation annotations and RGB images. By doing so, we have made the first attempt to explore the complementary relationship between semantic segmentation and spectral recovery. Experimental results on both the FHRS dataset and the publicly available LIB-HSI dataset demonstrate that our proposed method has the ability to enhance both tasks by utilizing their complementary relationship, indicating the generalization ability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚湖发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
小羊睡饱了完成签到,获得积分20
4秒前
4秒前
zwy完成签到,获得积分10
5秒前
三个哈卡完成签到,获得积分10
6秒前
6秒前
无奈醉柳完成签到,获得积分10
8秒前
Akim应助OUTMAN采纳,获得30
10秒前
wangye发布了新的文献求助10
10秒前
12秒前
贪玩的寻冬完成签到,获得积分10
12秒前
胡图图发布了新的文献求助30
12秒前
月月鸟完成签到,获得积分10
13秒前
CodeCraft应助可耐的白山采纳,获得10
13秒前
木子三少完成签到,获得积分0
14秒前
14秒前
自然的羽毛完成签到,获得积分10
14秒前
18秒前
19秒前
19秒前
20秒前
20秒前
21秒前
DUANG-Jerry发布了新的文献求助30
23秒前
大模型应助李麟采纳,获得10
24秒前
25秒前
汉堡包应助阡陌采纳,获得10
25秒前
Singularity应助视野胤采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240