Improving Node Classification Accuracy of GNN through Input and Output Intervention

计算机科学 模块化设计 图形 人工智能 数据挖掘 机器学习 集合(抽象数据类型) 节点(物理) 利用 基线(sea) 模式识别(心理学) 理论计算机科学 海洋学 计算机安全 结构工程 工程类 程序设计语言 地质学 操作系统
作者
Anjan Chowdhury,Sriram Srinivasan,Animesh Mukherjee,Sanjukta Bhowmick,Kuntal Ghosh
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-31
标识
DOI:10.1145/3610535
摘要

Graph Neural Networks (GNNs) are a popular machine learning framework for solving various graph processing applications. This framework exploits both the graph topology and the feature vectors of the nodes. One of the important applications of GNN is in the semi-supervised node classification task. The accuracy of the node classification using GNN depends on (i) the number and (ii) the choice of the training nodes. In this article, we demonstrate that increasing the training nodes by selecting nodes from the same class that are spread out across non-contiguous subgraphs, can significantly improve the accuracy. We accomplish this by presenting a novel input intervention technique that can be used in conjunction with different GNN classification methods to increase the non-contiguous training nodes and, thereby, improve the accuracy. We also present an output intervention technique to identify misclassified nodes and relabel them with their potentially correct labels. We demonstrate on real-world networks that our proposed methods, both individually and collectively, significantly improve the accuracy in comparison to the baseline GNN algorithms. Both our methods are agnostic. Apart from the initial set of training nodes generated by the baseline GNN methods, our techniques do not need any other extra knowledge about the classes of the nodes. Thus, our methods are modular and can be used as pre-and post-processing steps with many of the currently available GNN methods to improve their accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助阿毛采纳,获得10
刚刚
Jenny应助狂野的以珊采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
研友_LMNjkn发布了新的文献求助10
3秒前
ding应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
pinging应助科研通管家采纳,获得10
4秒前
唠叨的月光完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
清爽老九应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得20
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
清爽老九应助科研通管家采纳,获得20
4秒前
英姑应助科研通管家采纳,获得30
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
优雅苑睐完成签到,获得积分10
5秒前
善学以致用应助CD采纳,获得10
5秒前
无花果应助孙奕采纳,获得10
6秒前
6秒前
HYH发布了新的文献求助20
6秒前
Rinohalt发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
领导范儿应助通~采纳,获得10
8秒前
8秒前
fufufu123发布了新的文献求助10
8秒前
英姑应助猪猪hero采纳,获得10
8秒前
励志小薛发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794