Managing traffic evacuation with multiclass connected and autonomous vehicles

计算机科学 任务(项目管理) 多类分类 细胞传递模型 模拟 交通拥挤 过境(卫星) 实时计算 人工智能 公共交通 运输工程 工程类 支持向量机 系统工程
作者
Jialin Liu,Zheng Liu,Bin Jia,Shiteng Zheng,Hao Ji
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:: 128985-128985
标识
DOI:10.1016/j.physa.2023.128985
摘要

Connected and autonomous vehicles (CAVs) provide a novel perspective to address challenges of traditional evacuation modes, such as the need for trained human drivers, out-of-control, congestion, and limited road capacity. This paper focuses on managing a multiclass traffic evacuation task of private CAVs and mass-transit CAVs. Firstly, we propose a multiclass cell transmission model with moving bottlenecks to model the multiclass CAVs. In particular, we discretize the road network into a multi-size cell network to capture the speed difference between two types of CAVs. The mass-transit CAVs are treated as moving bottlenecks, which can linearly reduce the road capacity in a certain density range. Secondly, we formulate a system optimum collaborative evacuation model to minimize the evacuation network clearance time or minimize the total travel time of evacuees. Constraints include multiclass fleet size, signal-free intersections, loading multiclass CAVs, and non-holding back. Finally, we conduct numerical experiments to test the collaborative evacuation model. On an evacuation corridor, the results show that our proposed model can capture multiclass traffic dynamics and traffic congestion. In the Sioux-Falls network, we evaluate the evacuation efficiency of multiclass CAVs using the fully mixed approach and the lane-based approach. The results indicate that the evacuation efficiency of using the fully mixed approach may be better than that of using the lane-based approach under certain evacuation demands. The cooperation of multiclass CAVs can transfer congestion and reduce evacuation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
1秒前
科研鸟发布了新的文献求助10
1秒前
1秒前
沸腾鱼健康完成签到,获得积分10
1秒前
1秒前
脑洞疼应助lhs采纳,获得10
2秒前
何1完成签到,获得积分20
3秒前
何1发布了新的文献求助10
6秒前
10秒前
yu完成签到 ,获得积分10
10秒前
11秒前
科研鸟完成签到,获得积分10
11秒前
zouzhao发布了新的文献求助10
15秒前
16秒前
123发布了新的文献求助10
17秒前
木子李33完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
24秒前
24秒前
24秒前
Owen应助yfw采纳,获得10
25秒前
李大姐发布了新的文献求助10
25秒前
Besty完成签到,获得积分10
25秒前
orixero应助Zxc采纳,获得10
25秒前
笑点低映冬完成签到,获得积分10
26秒前
123完成签到,获得积分20
27秒前
yehaidadao发布了新的文献求助10
27秒前
qqesk发布了新的文献求助10
28秒前
阿治完成签到 ,获得积分10
29秒前
30秒前
田様应助qqesk采纳,获得10
31秒前
安古妮稀发布了新的文献求助10
35秒前
饼大王完成签到,获得积分10
35秒前
忘的澜完成签到,获得积分10
36秒前
37秒前
39秒前
李大姐完成签到,获得积分20
39秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043