Managing traffic evacuation with multiclass connected and autonomous vehicles

计算机科学 任务(项目管理) 多类分类 细胞传递模型 模拟 交通拥挤 离散化 实时计算 人工智能 运输工程 工程类 支持向量机 数学 数学分析 系统工程
作者
Jialin Liu,Zheng Liu,Bin Jia,Shiteng Zheng,Hao Ji
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:625: 128985-128985 被引量:5
标识
DOI:10.1016/j.physa.2023.128985
摘要

Connected and autonomous vehicles (CAVs) provide a novel perspective to address challenges of traditional evacuation modes, such as the need for trained human drivers, out-of-control, congestion, and limited road capacity. This paper focuses on managing a multiclass traffic evacuation task of private CAVs and mass-transit CAVs. Firstly, we propose a multiclass cell transmission model with moving bottlenecks to model the multiclass CAVs. In particular, we discretize the road network into a multi-size cell network to capture the speed difference between two types of CAVs. The mass-transit CAVs are treated as moving bottlenecks, which can linearly reduce the road capacity in a certain density range. Secondly, we formulate a system optimum collaborative evacuation model to minimize the evacuation network clearance time or minimize the total travel time of evacuees. Constraints include multiclass fleet size, signal-free intersections, loading multiclass CAVs, and non-holding back. Finally, we conduct numerical experiments to test the collaborative evacuation model. On an evacuation corridor, the results show that our proposed model can capture multiclass traffic dynamics and traffic congestion. In the Sioux-Falls network, we evaluate the evacuation efficiency of multiclass CAVs using the fully mixed approach and the lane-based approach. The results indicate that the evacuation efficiency of using the fully mixed approach may be better than that of using the lane-based approach under certain evacuation demands. The cooperation of multiclass CAVs can transfer congestion and reduce evacuation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分20
刚刚
刚刚
lyy发布了新的文献求助10
刚刚
星夜吹笛牛上完成签到,获得积分10
刚刚
滑腻腻的小鱼完成签到,获得积分10
1秒前
DijiaXu应助畅快焦采纳,获得10
1秒前
1秒前
xxx发布了新的文献求助10
2秒前
Sheart发布了新的文献求助10
3秒前
非哲发布了新的文献求助10
3秒前
翁怜晴发布了新的文献求助10
4秒前
yuan完成签到,获得积分10
4秒前
ldy发布了新的文献求助10
4秒前
田様应助Auh采纳,获得10
4秒前
5秒前
5秒前
搜集达人应助JABBA采纳,获得10
5秒前
宁宁完成签到,获得积分10
5秒前
bkagyin应助qwe采纳,获得10
5秒前
liu发布了新的文献求助10
5秒前
XiaoLiu应助Lee采纳,获得10
6秒前
6秒前
ydx发布了新的文献求助10
7秒前
7秒前
Akim应助yu采纳,获得10
7秒前
7秒前
8秒前
呆萌的傲旋关注了科研通微信公众号
8秒前
8秒前
小蘑菇应助点点采纳,获得10
10秒前
10秒前
10秒前
11秒前
XIA发布了新的文献求助20
11秒前
11秒前
英俊柠檬发布了新的文献求助10
11秒前
11秒前
lyy完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562