Revealing the complexity of users’ intention to adopt healthcare chatbots: A mixed-method analysis of antecedent condition configurations

聊天机器人 前因(行为心理学) 计算机科学 医疗保健 知识管理 集合(抽象数据类型) 人格 心理学 人机交互 万维网 数据科学 社会心理学 经济增长 经济 程序设计语言
作者
Xiwei Wang,Ran Luo,Yutong Liu,Peng Chen,Yuanyuan Tao,Yuming He
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (5): 103444-103444 被引量:19
标识
DOI:10.1016/j.ipm.2023.103444
摘要

Healthcare chatbots provide a professional, immediate, and low-cost tool for advising people on health information. Unlike previous studies on chatbot adoption that focus on the one-way net effect of components, this study reveals the complex antecedent configurations behind online healthcare chatbot adoption through an asymmetric approach. This study attempts to explain the causal configuration of user adoption in terms of three dimensions: functional, social, and user motivation features. A sequential mixed-method approach was chosen and a two-stage study, fuzzy set comparison analysis (fsQCA), and semi-structured interviews were conducted to deepen users' understanding, perceptions, and attitudes toward online healthcare chatbots, expressing more fine-grained insights into variable relationships. Five configurations were found to explain the high willingness of users to adopt healthcare chatbots. Perceived social presence was a core condition for each configuration. However, the social features of chatbots can only lead to high levels of trust and satisfaction when combined with functionality. The findings of this paper's mixed-method design and complexity study contribute to the adoption and theoretical literature on intelligent health services and chatbots. It guides tailoring chatbot functionality to individual user needs and provides practical guidance for the development of chatbots for health services through diverse combinations of machine chatbot features and user-motivated features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lezard完成签到,获得积分10
1秒前
Owen应助长孙幼荷采纳,获得10
1秒前
2秒前
李爱国应助aaadddhhh采纳,获得10
3秒前
隐形曼青应助10000SCI采纳,获得10
3秒前
淡然的灵应助风祯采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
gabauser完成签到,获得积分20
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
嘿嘿应助科研通管家采纳,获得10
5秒前
fd163c应助科研通管家采纳,获得10
6秒前
NICAI应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
NICAI应助科研通管家采纳,获得10
6秒前
汉堡包应助流光采纳,获得10
6秒前
6秒前
6秒前
传奇3应助英俊的文龙采纳,获得10
7秒前
刘1完成签到 ,获得积分10
7秒前
科研通AI5应助娃娃采纳,获得10
7秒前
秀丽绿真完成签到,获得积分10
8秒前
gabauser发布了新的文献求助10
8秒前
优雅的小海豚完成签到,获得积分20
8秒前
9秒前
shy发布了新的文献求助10
9秒前
富贵发布了新的文献求助10
10秒前
123发布了新的文献求助30
11秒前
欢呼夜白完成签到,获得积分10
11秒前
13秒前
Mystic完成签到,获得积分10
14秒前
14秒前
流光发布了新的文献求助10
18秒前
眼睛大的小蚂蚁完成签到 ,获得积分10
21秒前
西陆完成签到,获得积分10
22秒前
24秒前
Leo完成签到,获得积分10
26秒前
cooyuan发布了新的文献求助10
28秒前
aaadddhhh发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741468
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038512
捐赠科研通 3000962
什么是DOI,文献DOI怎么找? 1646907
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478