材料科学
钝化
扩散阻挡层
掺杂剂
能量转换效率
光电子学
热稳定性
分析化学(期刊)
纳米技术
兴奋剂
化学工程
图层(电子)
色谱法
工程类
化学
作者
Xinzhi Wu,Yangjian Lin,Chengyan Liu,Zhijia Han,Huan Li,Yupeng Wang,Feng Jiang,Kang Zhu,Binghui Ge,Weishu Liu
标识
DOI:10.1002/aenm.202301350
摘要
Abstract Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu 2 MgFe/Mg 2 Sn 0.75 Ge 0.25 interface is designed for Mg 2 Sn 0.75 Ge 0.25 ‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density ( ω max ) of 2.6 W cm −2 and conversion efficiency ( η max ) of 8% under a temperature difference (Δ T ) of 370 °C, which is the record‐breaking value in comparison to other Mg 2 (Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p ‐type Bi 2 Te 3 shows an excellent ω max of 1.3 W cm −2 and η max of 5.4% under a Δ T of 270 °C, comparable to commercial Bi 2 Te 3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI