材料科学
反铁磁性
自旋电子学
酞菁
单层
双金属
过渡金属
异质结
铁磁性
纳米技术
凝聚态物理
光电子学
化学
复合材料
物理
有机化学
催化作用
作者
Debing Long,Nikolay V. Tkachenko,Qingqing Feng,Xingxing Li,Alexander I. Boldyrev,Jinlong Yang,Li‐Ming Yang
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:1
标识
DOI:10.48550/arxiv.2307.05237
摘要
The expanded phthalocyanine (EPc) single-layer sheets with double transition metals (labeled as TM2EPc, TM = Sc-Zn) are predicted to be a new class of two-dimensional (2D) metal-organic materials with a series of favorable functional properties by means of systematic first-principle calculations and molecular dynamics simulations. The strong coordination between metal and EPc substrate accounts for the excellent structural stability. Chemical bonding analysis has demonstrated the absence of TM-TM bonding. Each metal center is isolated, but connected to the organic framework by four 2c-2e TM-N {\sigma}-bonds to form an extended 2D network. Unexpectedly, it is found that the V2EPc is an antiferromagnetic metal with Dirac cone, while Cr2EPc exhibits ferromagnetic Dirac half-metallicity, which is not common in 2D materials. Excitingly, the ferromagnetic Cr2EPc and antiferromagnetic Mn2- and Fe2-EPc have high magnetic transition temperatures of 223, 217, and 325 K, respectively, which are crucial for the practical applications of spintronics. Cr2EPc can maintain the Dirac half-metallicity under -6 % ~ 2 % biaxial strains, and Fe2EPc can transform from semiconductor to half-metal by applying -6 % ~ -10 % compressive strains. Additionally, the TM2EPc monolayers exhibit a full response to visible light and some materials have strong absorption in the ultraviolet and infrared regions in addition to visible light, showing extraordinary solar light-harvesting ability. Notably, the designed type-II heterojunctions Fe2EPc/SnC, Co2EPc/GeS, and Ni2EPc/2H-WSe2 have high power conversion efficiency (PCE > 15%), especially the PCE of Ni2EPc/2H-WSe2 reaches 25.19%, which has great potential in solar cell applications. All these desired properties render 2D TM2EPc monolayers promising candidates for future applications in nanoelectronics, spintronics,optoelectronics, and photovoltaic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI