Activity and Selectivity Roadmap for C–N Electro-Coupling on MXenes

化学 MXenes公司 联轴节(管道) 选择性 密度泛函理论 催化作用 电催化剂 吸附 电化学 计算化学 物理化学 电极 材料科学 有机化学 冶金
作者
Yiran Jiao,Haobo Li,Yan Jiao,Shi Zhang Qiao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (28): 15572-15580 被引量:15
标识
DOI:10.1021/jacs.3c05171
摘要

Electrochemical coupling between carbon and nitrogen species to generate high-value C–N products, including urea, presents significant economic and environmental potentials for addressing the energy crisis. However, this electrocatalysis process still suffers from limited mechanism understanding due to the complex reaction networks, which restricts the development of electrocatalysts beyond trial-and-error practices. In this work, we aim to improve the understanding of the C–N coupling mechanism. This goal was achieved by constructing the activity and selectivity landscape on 54 MXene surfaces by density functional theory (DFT) calculations. Our results show that the activity of the C–N coupling step is largely determined by the *CO adsorption strength (Ead-CO), while the selectivity relies more on the co-adsorption strength of *N and *CO (Ead-CO and Ead-N). Based on these findings, we propose that an ideal C–N coupling MXene catalyst should satisfy moderate *CO and stable *N adsorption. Through the machine learning-based approach, data-driven formulas for describing the relationship between Ead-CO and Ead-N with atomic physical chemistry features were further identified. Based on the identified formula, 162 MXene materials were screened without time-consuming DFT calculations. Several potential catalysts were predicted with good C–N coupling performance, such as Ta2W2C3. The candidate was then verified by DFT calculations. This study has incorporated machine learning methods for the first time to provide an efficient high-throughput screening method for selective C–N coupling electrocatalysts, which could be extended to a wider range of electrocatalytic reactions to facilitate green chemical production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助无情的可愁采纳,获得10
1秒前
zhaoyuqing发布了新的文献求助10
2秒前
2秒前
zhu97应助科研通管家采纳,获得20
2秒前
tianzml0应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
遥远的尧应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
走四方应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
云瑾应助科研通管家采纳,获得20
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
修仙应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
云瑾应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
兰先生完成签到,获得积分20
3秒前
852应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
7秒前
zhou默发布了新的文献求助10
7秒前
Uuuuuuumi发布了新的文献求助10
8秒前
9秒前
酷炫灵安完成签到,获得积分10
9秒前
FAREWELL发布了新的文献求助10
10秒前
壮观冬寒发布了新的文献求助10
11秒前
13秒前
香蕉觅云应助22222采纳,获得20
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234