Detection of Foreign Objects Intrusion Into Transmission Lines Using Diverse Generation Model

电力传输 计算机科学 人工智能 传输(电信) 深度学习 入侵检测系统 目标检测 计算机视觉 对象(语法) 机器学习 模式识别(心理学) 数据挖掘 工程类 电信 电气工程
作者
Yuyao Wu,Shuanfeng Zhao,Zhizhong Xing,Wei Zheng,Yang Li,Yao Li
出处
期刊:IEEE Transactions on Power Delivery [Institute of Electrical and Electronics Engineers]
卷期号:38 (5): 3551-3560 被引量:24
标识
DOI:10.1109/tpwrd.2023.3279891
摘要

Foreign objects intrusion into transmission lines can lead to serious troubles, using deep learning technology for foreign object detection has good performance and can reduce losses. Due to the complexity and diversity of the surrounding environment of the transmission lines, and the limitations of data acquisition methods, the image data of foreign objects invading transmission lines used in current research are extremely rare, and the types of foreign objects and background features are single. Deep learning requires large image data as a research driving force, Rare number of images leads to insufficient model fitting and affects the detection accuracy. We propose a Diverse Generation model, which can generate many images of foreign objects invading the transmission lines to provide support for deep learning, thereby solving the shortcomings of existing models. The results show that the dataset generated by our model has high quality and diversity, and can cover different scenes including those that are not convenient for data acquisition in reality. Thus, the accuracy of foreign objects detection can be effectively improved. This achievement provides a preliminary guarantee for abnormal detection of transmission lines, and helps to promote the integration of artificial intelligence technology in the power system.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yifan2024应助苹果小小采纳,获得30
1秒前
李爱国应助紧张的非笑采纳,获得30
4秒前
SciGPT应助Cdashi采纳,获得10
5秒前
5秒前
学医自救完成签到,获得积分10
7秒前
英俊的铭应助龚成明采纳,获得10
9秒前
222发布了新的文献求助10
9秒前
春夏完成签到,获得积分10
10秒前
yufei完成签到,获得积分10
13秒前
13秒前
Akim应助clay_park采纳,获得10
14秒前
自信寄灵完成签到 ,获得积分10
14秒前
bkagyin应助Yiy采纳,获得10
16秒前
香蕉觅云应助诸葛非笑采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
18秒前
思源应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
18秒前
annafan应助科研通管家采纳,获得10
18秒前
Hxw应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
英姑应助123采纳,获得30
19秒前
yufei发布了新的文献求助10
19秒前
20秒前
毛豆应助MMM采纳,获得10
20秒前
丰知然应助gugu采纳,获得10
21秒前
靓丽的安筠完成签到 ,获得积分10
21秒前
21秒前
Ternura发布了新的文献求助10
22秒前
23秒前
龚成明发布了新的文献求助10
25秒前
25秒前
clay_park发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416287
求助须知:如何正确求助?哪些是违规求助? 3018160
关于积分的说明 8883285
捐赠科研通 2705580
什么是DOI,文献DOI怎么找? 1483695
科研通“疑难数据库(出版商)”最低求助积分说明 685787
邀请新用户注册赠送积分活动 680931