亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding

计算机科学 人工智能 卷积神经网络 机器学习 水准点(测量) 深度学习 Boosting(机器学习) 梯度升压 编码(内存) 特征选择 集合预报 集成学习 人工神经网络 鉴定(生物学) 随机森林 大地测量学 植物 生物 地理
作者
Qitong Yuan,Keyi Chen,Yimin Yu,Nguyen Quoc Khanh Le,Matthew Chin Heng Chua
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:80
标识
DOI:10.1093/bib/bbac630
摘要

Abstract Anticancer peptides (ACPs) are the types of peptides that have been demonstrated to have anticancer activities. Using ACPs to prevent cancer could be a viable alternative to conventional cancer treatments because they are safer and display higher selectivity. Due to ACP identification being highly lab-limited, expensive and lengthy, a computational method is proposed to predict ACPs from sequence information in this study. The process includes the input of the peptide sequences, feature extraction in terms of ordinal encoding with positional information and handcrafted features, and finally feature selection. The whole model comprises of two modules, including deep learning and machine learning algorithms. The deep learning module contained two channels: bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN). Light Gradient Boosting Machine (LightGBM) was used in the machine learning module. Finally, this study voted the three models’ classification results for the three paths resulting in the model ensemble layer. This study provides insights into ACP prediction utilizing a novel method and presented a promising performance. It used a benchmark dataset for further exploration and improvement compared with previous studies. Our final model has an accuracy of 0.7895, sensitivity of 0.8153 and specificity of 0.7676, and it was increased by at least 2% compared with the state-of-the-art studies in all metrics. Hence, this paper presents a novel method that can potentially predict ACPs more effectively and efficiently. The work and source codes are made available to the community of researchers and developers at https://github.com/khanhlee/acp-ope/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雍远望发布了新的文献求助10
1秒前
2秒前
3秒前
吃了吃了完成签到,获得积分10
9秒前
桐桐应助雍远望采纳,获得10
10秒前
汤姆凯特发布了新的文献求助10
13秒前
砰砰砰砰砰完成签到,获得积分10
15秒前
eric888完成签到,获得积分0
15秒前
weihuiting2024完成签到,获得积分20
29秒前
量子星尘发布了新的文献求助10
30秒前
33秒前
37秒前
文献高手完成签到 ,获得积分10
39秒前
39秒前
Lshyong完成签到 ,获得积分10
46秒前
1分钟前
闪落完成签到 ,获得积分10
1分钟前
zyl完成签到 ,获得积分10
1分钟前
脑洞疼应助橙味汽水winter采纳,获得10
1分钟前
彭于晏应助run采纳,获得30
1分钟前
1分钟前
1分钟前
ssldmm发布了新的文献求助10
1分钟前
1分钟前
独特靖发布了新的文献求助10
1分钟前
二牛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
run发布了新的文献求助30
1分钟前
烟雨客完成签到 ,获得积分10
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
qi发布了新的文献求助10
2分钟前
原子超人完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126816
求助须知:如何正确求助?哪些是违规求助? 4330159
关于积分的说明 13492901
捐赠科研通 4165471
什么是DOI,文献DOI怎么找? 2283415
邀请新用户注册赠送积分活动 1284447
关于科研通互助平台的介绍 1224193