Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding

计算机科学 人工智能 卷积神经网络 机器学习 水准点(测量) 深度学习 Boosting(机器学习) 梯度升压 编码(内存) 特征选择 集合预报 集成学习 人工神经网络 鉴定(生物学) 随机森林 大地测量学 植物 生物 地理
作者
Qitong Yuan,Keyi Chen,Yimin Yu,Nguyen Quoc Khanh Le,Matthew Chin Heng Chua
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:95
标识
DOI:10.1093/bib/bbac630
摘要

Abstract Anticancer peptides (ACPs) are the types of peptides that have been demonstrated to have anticancer activities. Using ACPs to prevent cancer could be a viable alternative to conventional cancer treatments because they are safer and display higher selectivity. Due to ACP identification being highly lab-limited, expensive and lengthy, a computational method is proposed to predict ACPs from sequence information in this study. The process includes the input of the peptide sequences, feature extraction in terms of ordinal encoding with positional information and handcrafted features, and finally feature selection. The whole model comprises of two modules, including deep learning and machine learning algorithms. The deep learning module contained two channels: bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN). Light Gradient Boosting Machine (LightGBM) was used in the machine learning module. Finally, this study voted the three models’ classification results for the three paths resulting in the model ensemble layer. This study provides insights into ACP prediction utilizing a novel method and presented a promising performance. It used a benchmark dataset for further exploration and improvement compared with previous studies. Our final model has an accuracy of 0.7895, sensitivity of 0.8153 and specificity of 0.7676, and it was increased by at least 2% compared with the state-of-the-art studies in all metrics. Hence, this paper presents a novel method that can potentially predict ACPs more effectively and efficiently. The work and source codes are made available to the community of researchers and developers at https://github.com/khanhlee/acp-ope/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助YANYAN采纳,获得10
1秒前
LG关闭了LG文献求助
2秒前
赘婿应助NIU采纳,获得10
2秒前
YooM发布了新的文献求助10
2秒前
yuliuism发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
叮叮车完成签到,获得积分10
3秒前
爱啥啥发布了新的文献求助10
4秒前
个性若冰发布了新的文献求助10
4秒前
4秒前
顾矜应助安世倌采纳,获得10
4秒前
z_king_d_23发布了新的文献求助10
6秒前
6秒前
叮叮车发布了新的文献求助20
7秒前
桐桐应助研友_8QxayZ采纳,获得10
9秒前
情怀应助4149采纳,获得10
9秒前
xiaolei001发布了新的文献求助10
10秒前
丘比特应助王小花采纳,获得10
10秒前
断奉发布了新的文献求助10
10秒前
Tophet完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
英姑应助吴鑫飞采纳,获得80
13秒前
骑羊完成签到,获得积分10
13秒前
Augenstern完成签到,获得积分20
14秒前
YANYAN发布了新的文献求助10
14秒前
14秒前
YooM发布了新的文献求助10
15秒前
yanliu95发布了新的文献求助30
15秒前
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
灵络完成签到,获得积分10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
安世倌发布了新的文献求助10
19秒前
欢呼香芋完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769630
求助须知:如何正确求助?哪些是违规求助? 5580702
关于积分的说明 15422304
捐赠科研通 4903300
什么是DOI,文献DOI怎么找? 2638156
邀请新用户注册赠送积分活动 1586055
关于科研通互助平台的介绍 1541154