Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding

计算机科学 人工智能 卷积神经网络 机器学习 水准点(测量) 深度学习 Boosting(机器学习) 梯度升压 编码(内存) 特征选择 集合预报 集成学习 人工神经网络 鉴定(生物学) 随机森林 植物 生物 大地测量学 地理
作者
Qitong Yuan,Keyi Chen,Yimin Yu,Nguyen Quoc Khanh Le,Matthew Chin Heng Chua
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:75
标识
DOI:10.1093/bib/bbac630
摘要

Abstract Anticancer peptides (ACPs) are the types of peptides that have been demonstrated to have anticancer activities. Using ACPs to prevent cancer could be a viable alternative to conventional cancer treatments because they are safer and display higher selectivity. Due to ACP identification being highly lab-limited, expensive and lengthy, a computational method is proposed to predict ACPs from sequence information in this study. The process includes the input of the peptide sequences, feature extraction in terms of ordinal encoding with positional information and handcrafted features, and finally feature selection. The whole model comprises of two modules, including deep learning and machine learning algorithms. The deep learning module contained two channels: bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN). Light Gradient Boosting Machine (LightGBM) was used in the machine learning module. Finally, this study voted the three models’ classification results for the three paths resulting in the model ensemble layer. This study provides insights into ACP prediction utilizing a novel method and presented a promising performance. It used a benchmark dataset for further exploration and improvement compared with previous studies. Our final model has an accuracy of 0.7895, sensitivity of 0.8153 and specificity of 0.7676, and it was increased by at least 2% compared with the state-of-the-art studies in all metrics. Hence, this paper presents a novel method that can potentially predict ACPs more effectively and efficiently. The work and source codes are made available to the community of researchers and developers at https://github.com/khanhlee/acp-ope/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chihirovvvv完成签到,获得积分10
刚刚
内向映天完成签到 ,获得积分10
1秒前
一多完成签到 ,获得积分10
1秒前
小葫芦完成签到 ,获得积分10
1秒前
Cheung2121发布了新的文献求助10
2秒前
zzz发布了新的文献求助10
2秒前
小麦完成签到,获得积分10
4秒前
风中的非笑完成签到,获得积分10
4秒前
SICHEN发布了新的文献求助10
5秒前
大模型应助程公子采纳,获得10
6秒前
zhao完成签到,获得积分10
6秒前
旺仔同学发布了新的文献求助10
7秒前
RX信完成签到,获得积分10
8秒前
mumufan完成签到,获得积分10
8秒前
无花果应助晴云采纳,获得10
8秒前
啊标完成签到,获得积分10
8秒前
耕牛热完成签到,获得积分10
8秒前
bsn完成签到 ,获得积分10
9秒前
Akim应助乌拉拉采纳,获得10
10秒前
夏傥完成签到,获得积分10
11秒前
11秒前
彭博完成签到 ,获得积分10
12秒前
SICHEN完成签到,获得积分10
12秒前
韩_完成签到,获得积分10
13秒前
nnnnn完成签到 ,获得积分10
14秒前
鉨汏闫完成签到,获得积分10
14秒前
14秒前
mahliya完成签到,获得积分10
15秒前
耕牛热发布了新的文献求助10
15秒前
天天快乐应助zzz采纳,获得10
16秒前
整齐的白凡完成签到,获得积分10
16秒前
坐雨赏花完成签到 ,获得积分10
16秒前
查理fofo完成签到,获得积分10
18秒前
Shandongdaxiu完成签到 ,获得积分10
20秒前
丘比特应助旺仔同学采纳,获得10
20秒前
科研通AI2S应助旺仔同学采纳,获得10
20秒前
Jasper应助旺仔同学采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029