Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding

计算机科学 人工智能 卷积神经网络 机器学习 水准点(测量) 深度学习 Boosting(机器学习) 梯度升压 编码(内存) 特征选择 集合预报 集成学习 人工神经网络 鉴定(生物学) 随机森林 大地测量学 植物 生物 地理
作者
Qitong Yuan,Keyi Chen,Yimin Yu,Nguyen Quoc Khanh Le,Matthew Chin Heng Chua
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:95
标识
DOI:10.1093/bib/bbac630
摘要

Abstract Anticancer peptides (ACPs) are the types of peptides that have been demonstrated to have anticancer activities. Using ACPs to prevent cancer could be a viable alternative to conventional cancer treatments because they are safer and display higher selectivity. Due to ACP identification being highly lab-limited, expensive and lengthy, a computational method is proposed to predict ACPs from sequence information in this study. The process includes the input of the peptide sequences, feature extraction in terms of ordinal encoding with positional information and handcrafted features, and finally feature selection. The whole model comprises of two modules, including deep learning and machine learning algorithms. The deep learning module contained two channels: bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN). Light Gradient Boosting Machine (LightGBM) was used in the machine learning module. Finally, this study voted the three models’ classification results for the three paths resulting in the model ensemble layer. This study provides insights into ACP prediction utilizing a novel method and presented a promising performance. It used a benchmark dataset for further exploration and improvement compared with previous studies. Our final model has an accuracy of 0.7895, sensitivity of 0.8153 and specificity of 0.7676, and it was increased by at least 2% compared with the state-of-the-art studies in all metrics. Hence, this paper presents a novel method that can potentially predict ACPs more effectively and efficiently. The work and source codes are made available to the community of researchers and developers at https://github.com/khanhlee/acp-ope/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小秦发布了新的文献求助10
1秒前
1秒前
lihjlhigoiupi完成签到,获得积分10
2秒前
赘婿应助hoaye采纳,获得10
2秒前
2秒前
虎虎生威完成签到,获得积分10
2秒前
lihongchi发布了新的文献求助10
3秒前
GUOGUO发布了新的文献求助30
4秒前
5秒前
万能图书馆应助十亩间采纳,获得10
5秒前
5秒前
崔风机发布了新的文献求助10
5秒前
lihjlhigoiupi发布了新的文献求助10
6秒前
6秒前
6秒前
曲沛萍完成签到,获得积分10
7秒前
豆子发布了新的文献求助10
8秒前
科研通AI6应助舒心的雪莲采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
踏雾发布了新的文献求助10
8秒前
lihongchi完成签到,获得积分10
8秒前
科研通AI6应助跳跃的岂愈采纳,获得10
9秒前
qll发布了新的文献求助20
9秒前
10秒前
pblack发布了新的文献求助30
10秒前
英姑应助小杨采纳,获得10
10秒前
李肉圆发布了新的文献求助10
10秒前
11秒前
qx发布了新的文献求助10
12秒前
沉柒完成签到,获得积分10
12秒前
念心发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
Hui发布了新的文献求助10
15秒前
15秒前
时嗷完成签到,获得积分10
16秒前
每天100次完成签到,获得积分10
16秒前
Paddy发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396