De novo protein fold design through sequence-independent fragment assembly simulations

蛋白质设计 蛋白质数据库 折叠(高阶函数) 序列空间 蛋白质结构 蛋白质结构预测 复制品 计算生物学 蛋白质工程 蛋白质二级结构 蛋白质折叠 序列(生物学) 计算机科学 生物 遗传学 数学 生物化学 巴拿赫空间 艺术 视觉艺术 程序设计语言 纯数学
作者
Robin Pearce,Xiaoqiang Huang,Gilbert S. Omenn,Yang Zhang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (4) 被引量:4
标识
DOI:10.1073/pnas.2208275120
摘要

De novo protein design generally consists of two steps, including structure and sequence design. Many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. We developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent-exposed areas closely matching their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses revealed that the major contributions to the successful structure design lay in the optimal energy force field, which contains a balanced set of SS packing terms, and REMC simulations, which were coupled with multiple auxiliary movements to efficiently search the conformational space. Additionally, the ability to recognize and assemble uncommon super-SS geometries, rather than the unique arrangement of common SS motifs, was the key to generating novel folds. These results demonstrate a strong potential to explore both structural and functional spaces through computational design simulations that natural proteins have not reached through evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余增辉完成签到 ,获得积分10
刚刚
刚刚
2秒前
迷你的书蕾完成签到 ,获得积分10
2秒前
4秒前
星河万里发布了新的文献求助10
5秒前
lily发布了新的文献求助10
7秒前
迷路的沧海完成签到,获得积分10
8秒前
恶恶么v发布了新的文献求助10
8秒前
8秒前
FFF发布了新的文献求助10
9秒前
陈徐钖发布了新的文献求助10
10秒前
10秒前
大模型应助溪风采纳,获得20
11秒前
哇哇哇发布了新的文献求助30
11秒前
QinQin发布了新的文献求助10
11秒前
cure发布了新的文献求助20
13秒前
大模型应助高强采纳,获得10
14秒前
星河万里完成签到,获得积分10
14秒前
15秒前
帅气的可乐完成签到,获得积分10
15秒前
iridium完成签到 ,获得积分10
18秒前
18秒前
ll应助QinQin采纳,获得10
19秒前
科研通AI2S应助科研小菜鸡采纳,获得10
21秒前
yier发布了新的文献求助20
22秒前
22秒前
可爱的函函应助夜雨听笑采纳,获得10
22秒前
23秒前
萧水白发布了新的文献求助100
28秒前
李健的小迷弟应助miracle采纳,获得10
29秒前
OOYWZEHNN发布了新的文献求助10
29秒前
科目三应助88采纳,获得10
29秒前
30秒前
W凯Z完成签到,获得积分10
31秒前
无花果应助呓语采纳,获得10
32秒前
an发布了新的文献求助10
33秒前
cure完成签到,获得积分10
33秒前
dochx完成签到,获得积分10
35秒前
OOYWZEHNN完成签到,获得积分20
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329374
求助须知:如何正确求助?哪些是违规求助? 2959048
关于积分的说明 8594165
捐赠科研通 2637581
什么是DOI,文献DOI怎么找? 1443623
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656183