De novo protein fold design through sequence-independent fragment assembly simulations

蛋白质设计 蛋白质数据库 折叠(高阶函数) 序列空间 蛋白质结构 蛋白质结构预测 复制品 计算生物学 蛋白质工程 蛋白质二级结构 蛋白质折叠 序列(生物学) 计算机科学 生物 遗传学 数学 生物化学 艺术 纯数学 巴拿赫空间 视觉艺术 程序设计语言
作者
Robin Pearce,Xiaoqiang Huang,Gilbert S. Omenn,Yang Zhang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (4) 被引量:4
标识
DOI:10.1073/pnas.2208275120
摘要

De novo protein design generally consists of two steps, including structure and sequence design. Many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. We developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent-exposed areas closely matching their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses revealed that the major contributions to the successful structure design lay in the optimal energy force field, which contains a balanced set of SS packing terms, and REMC simulations, which were coupled with multiple auxiliary movements to efficiently search the conformational space. Additionally, the ability to recognize and assemble uncommon super-SS geometries, rather than the unique arrangement of common SS motifs, was the key to generating novel folds. These results demonstrate a strong potential to explore both structural and functional spaces through computational design simulations that natural proteins have not reached through evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
eric曾发布了新的文献求助10
2秒前
2秒前
嘻嘻嘻完成签到,获得积分10
3秒前
3秒前
carrier_hc完成签到,获得积分10
3秒前
冰安发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
在水一方应助桑桑采纳,获得10
7秒前
7秒前
充电宝应助通~采纳,获得10
8秒前
liberation完成签到 ,获得积分10
8秒前
牛牛123完成签到 ,获得积分10
8秒前
9秒前
9秒前
罗实发布了新的文献求助10
10秒前
10秒前
大模型应助LL采纳,获得10
10秒前
33333发布了新的文献求助10
10秒前
自觉秋发布了新的文献求助10
11秒前
啱啱完成签到,获得积分10
11秒前
在水一方应助呆萌的秋天采纳,获得10
11秒前
暴打小猪仔完成签到,获得积分10
11秒前
王w完成签到 ,获得积分10
12秒前
13秒前
14秒前
南瓜咸杏完成签到,获得积分10
14秒前
陈甸甸完成签到,获得积分10
14秒前
韦威风发布了新的文献求助10
15秒前
15秒前
king完成签到,获得积分10
15秒前
qweerrtt发布了新的文献求助10
16秒前
余三浪完成签到,获得积分10
16秒前
17秒前
lixoii发布了新的文献求助20
17秒前
豌豆射手发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762