亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MKVSE: Multimodal Knowledge Enhanced Visual-semantic Embedding for Image-text Retrieval

计算机科学 情报检索 嵌入 自然语言处理 图像(数学) 文字嵌入 人工智能 关系(数据库) 数据挖掘
作者
Duoduo Feng,Xiangteng He,Yuxin Peng
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (5): 1-21 被引量:13
标识
DOI:10.1145/3580501
摘要

Image-text retrieval aims to take the text (image) query to retrieve the semantically relevant images (texts), which is fundamental and critical in the search system, online shopping, and social network. Existing works have shown the effectiveness of visual-semantic embedding and unimodal knowledge exploiting (e.g., textual knowledge) in connecting the image and text. However, they neglect the implicit multimodal knowledge relations between these two modalities when the image contains information that is not directly described in the text, hindering the ability to connect the image and text with the implicit semantic relations. For instance, an image shows a person next to the “tap” but the pairing text description may only include the word “wash,” missing the washing tool “tap.” The implicit semantic relation between image object “tap” and text word “wash” can help to connect the above image and text. To sufficiently utilize the implicit multimodal knowledge relations, we propose a M ultimodal K nowledge enhanced V isual- S emantic E mbedding (MKVSE) approach building a multimodal knowledge graph to explicitly represent the implicit multimodal knowledge relations and injecting it to visual-semantic embedding for image-text retrieval task. The contributions in this article can be summarized as follows: (1) M ultimodal K nowledge G raph (MKG) is proposed to explicitly represent the implicit multimodal knowledge relations between the image and text as intra-modal semantic relations and inter-modal co-occurrence relations . Intra-modal semantic relations provide synonymy information that is implicit in the unimodal data such as the text corpus. And inter-modal co-occurrence relations characterize the co-occurrence correlations (such as temporal, causal, and logical) that are implicit in image-text pairs. These two relations help establishing reliable image-text connections in the higher-level semantic space. (2) M ultimodal G raph C onvolution N etworks (MGCN) is proposed to reason on the MKG in two steps to sufficiently utilize the implicit multimodal knowledge relations. In the first step, MGCN focuses on the intra-modal relations to distinguish other entities in the semantic space. In the second step, MGCN focuses on the inter-modal relations to connect multimodal entities based on co-occurrence correlations. The two-step reasoning manner can sufficiently utilize the implicit semantic relations between two modal entities to enhance the embeddings of the image and text. Extensive experiments are conducted on two widely used datasets, namely, Flickr30k and MSCOCO, to demonstrate the superiority of the proposed MKVSE approach in achieving state-of-the-art performances. The codes are available at https://github.com/PKU-ICST-MIPL/MKVSE-TOMM2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文果汁完成签到,获得积分10
8秒前
22秒前
guan完成签到,获得积分10
1分钟前
guan发布了新的文献求助10
1分钟前
努力的小胡完成签到 ,获得积分10
1分钟前
努力的小胡关注了科研通微信公众号
1分钟前
Tim完成签到 ,获得积分10
2分钟前
33完成签到,获得积分10
2分钟前
caca完成签到,获得积分10
2分钟前
2分钟前
禹奎发布了新的文献求助10
2分钟前
pass完成签到 ,获得积分10
3分钟前
3分钟前
乐生发布了新的文献求助10
3分钟前
禹奎发布了新的文献求助10
3分钟前
大个应助乐生采纳,获得10
3分钟前
禹奎完成签到,获得积分10
3分钟前
pluto应助guan采纳,获得10
3分钟前
盒子应助guan采纳,获得10
3分钟前
Una完成签到,获得积分10
3分钟前
熊星星完成签到 ,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
4分钟前
zhanglh完成签到 ,获得积分10
5分钟前
5分钟前
zhanglh发布了新的文献求助10
5分钟前
CHENCHEN完成签到,获得积分10
6分钟前
爆米花应助希勤采纳,获得10
6分钟前
6分钟前
6分钟前
凭栏听雨发布了新的文献求助10
6分钟前
一剑白发布了新的文献求助10
6分钟前
winkyyang完成签到 ,获得积分10
6分钟前
一剑白完成签到 ,获得积分10
6分钟前
小饼饼完成签到 ,获得积分10
6分钟前
7分钟前
希勤发布了新的文献求助10
7分钟前
student完成签到 ,获得积分10
7分钟前
彭彭发布了新的文献求助10
7分钟前
大模型应助彭彭采纳,获得10
7分钟前
柠檬完成签到,获得积分10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133930
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768641
捐赠科研通 2440188
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791