Use of a neural network‐based prediction method to calculate the therapeutic dose in boron neutron capture therapy of patients with glioblastoma

中子俘获 中子 放射治疗 核医学 中子温度 放射治疗计划 胶质母细胞瘤 蒙特卡罗方法 中子源 相对生物效应 医学物理学 材料科学 计算机科学 辐射 医学 物理 核物理学 数学 放射科 统计 癌症研究
作者
Feng Tian,Sheng Zhao,Changran Geng,Chang Guo,Renyao Wu,Xiaobin Tang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3008-3018 被引量:8
标识
DOI:10.1002/mp.16215
摘要

Boron neutron capture therapy (BNCT) is a binary radiotherapy based on the 10 B(n, α)7 Li capture reaction. Nonradioactive isotope 10 B atoms which selectively concentrated in tumor cells will react with low energy neutrons (mainly thermal neutrons) to produce secondary particles with high linear energy transfer, thus depositing dose in tumor cells. In clinical practice, an appropriate treatment plan needs to be set on the basis of the treatment planning system (TPS). Existing BNCT TPSs usually use the Monte Carlo method to determine the three-dimensional (3D) therapeutic dose distribution, which often requires a lot of calculation time due to the complexity of simulating neutron transportation.A neural network-based BNCT dose prediction method is proposed to achieve the rapid and accurate acquisition of BNCT 3D therapeutic dose distribution for patients with glioblastoma to solve the time-consuming problem of BNCT dose calculation in clinic.The clinical data of 122 patients with glioblastoma are collected. Eighteen patients are used as a test set, and the rest are used as a training set. The 3D-UNET is constructed through the design optimization of input and output data sets based on radiation field information and patient CT information to enable the prediction of 3D dose distribution of BNCT.The average mean absolute error of the predicted and simulated equivalent doses of each organ are all less than 1 Gy. For the dose to 95% of the GTV volume (D95 ), the relative deviation between predicted and simulated results are all less than 2%. The average 2 mm/2% gamma index is 89.67%, and the average 3 mm/3% gamma index is 96.78%. The calculation takes about 6 h to simulate the 3D therapeutic dose distribution of a patient with glioblastoma by Monte Carlo method using Intel Xeon E5-2699 v4, whereas the time required by the method proposed in this study is almost less than 1 s using a Titan-V graphics card.This study proposes a 3D dose prediction method based on 3D-UNET architecture in BNCT, and the feasibility of this method is demonstrated. Results indicate that the method can remarkably reduce the time required for calculation and ensure the accuracy of the predicted 3D therapeutic dose-effect. This work is expected to promote the clinical development of BNCT in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
杨yang完成签到 ,获得积分10
刚刚
不想洗碗完成签到 ,获得积分10
17秒前
温馨完成签到 ,获得积分10
25秒前
王海海完成签到 ,获得积分10
28秒前
31秒前
香香丿完成签到 ,获得积分10
32秒前
rgjipeng完成签到,获得积分10
32秒前
sfwrbh发布了新的文献求助10
36秒前
LUCKY完成签到 ,获得积分10
37秒前
布蓝图完成签到 ,获得积分10
39秒前
贪玩的网络完成签到 ,获得积分10
40秒前
西瓜霜完成签到 ,获得积分10
44秒前
陈陈完成签到 ,获得积分10
44秒前
45秒前
花誓lydia完成签到 ,获得积分10
51秒前
流星雨完成签到 ,获得积分10
57秒前
marc107完成签到,获得积分10
57秒前
xuan完成签到,获得积分10
1分钟前
喜悦向日葵完成签到 ,获得积分10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
Hello应助sunshine采纳,获得10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
缓慢的灵枫完成签到 ,获得积分10
1分钟前
Nick完成签到,获得积分0
1分钟前
1分钟前
彭于晏应助陶醉的笑槐采纳,获得10
1分钟前
Yuan完成签到,获得积分10
1分钟前
1分钟前
sunshine完成签到,获得积分10
1分钟前
mm完成签到 ,获得积分10
1分钟前
老迟到的羊完成签到 ,获得积分10
1分钟前
sunshine发布了新的文献求助10
1分钟前
wangchong完成签到 ,获得积分10
1分钟前
1分钟前
Edward完成签到,获得积分10
1分钟前
tzjz_zrz完成签到,获得积分10
1分钟前
CodeCraft应助sunshine采纳,获得10
1分钟前
zheng完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251