Use of a neural network‐based prediction method to calculate the therapeutic dose in boron neutron capture therapy of patients with glioblastoma

中子俘获 中子 放射治疗 核医学 中子温度 放射治疗计划 胶质母细胞瘤 蒙特卡罗方法 中子源 相对生物效应 医学物理学 材料科学 计算机科学 辐射 医学 物理 核物理学 数学 放射科 统计 癌症研究
作者
Feng Tian,Sheng Zhao,Changran Geng,Chang Guo,Renyao Wu,Xiaobin Tang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3008-3018 被引量:8
标识
DOI:10.1002/mp.16215
摘要

Boron neutron capture therapy (BNCT) is a binary radiotherapy based on the 10 B(n, α)7 Li capture reaction. Nonradioactive isotope 10 B atoms which selectively concentrated in tumor cells will react with low energy neutrons (mainly thermal neutrons) to produce secondary particles with high linear energy transfer, thus depositing dose in tumor cells. In clinical practice, an appropriate treatment plan needs to be set on the basis of the treatment planning system (TPS). Existing BNCT TPSs usually use the Monte Carlo method to determine the three-dimensional (3D) therapeutic dose distribution, which often requires a lot of calculation time due to the complexity of simulating neutron transportation.A neural network-based BNCT dose prediction method is proposed to achieve the rapid and accurate acquisition of BNCT 3D therapeutic dose distribution for patients with glioblastoma to solve the time-consuming problem of BNCT dose calculation in clinic.The clinical data of 122 patients with glioblastoma are collected. Eighteen patients are used as a test set, and the rest are used as a training set. The 3D-UNET is constructed through the design optimization of input and output data sets based on radiation field information and patient CT information to enable the prediction of 3D dose distribution of BNCT.The average mean absolute error of the predicted and simulated equivalent doses of each organ are all less than 1 Gy. For the dose to 95% of the GTV volume (D95 ), the relative deviation between predicted and simulated results are all less than 2%. The average 2 mm/2% gamma index is 89.67%, and the average 3 mm/3% gamma index is 96.78%. The calculation takes about 6 h to simulate the 3D therapeutic dose distribution of a patient with glioblastoma by Monte Carlo method using Intel Xeon E5-2699 v4, whereas the time required by the method proposed in this study is almost less than 1 s using a Titan-V graphics card.This study proposes a 3D dose prediction method based on 3D-UNET architecture in BNCT, and the feasibility of this method is demonstrated. Results indicate that the method can remarkably reduce the time required for calculation and ensure the accuracy of the predicted 3D therapeutic dose-effect. This work is expected to promote the clinical development of BNCT in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
击飞发布了新的文献求助10
1秒前
李健的小迷弟应助一二采纳,获得10
2秒前
2秒前
大卢完成签到 ,获得积分10
3秒前
4秒前
chaserlife发布了新的文献求助10
5秒前
一只东北鸟完成签到 ,获得积分20
6秒前
云_123发布了新的文献求助10
6秒前
科研完成签到 ,获得积分10
6秒前
7秒前
CodeCraft应助冰棍采纳,获得10
9秒前
Kathy发布了新的文献求助10
10秒前
JamesPei应助李新悦采纳,获得10
11秒前
空古悠浪完成签到,获得积分10
12秒前
13秒前
顾矜应助irisjlj采纳,获得10
13秒前
周而复始完成签到 ,获得积分10
13秒前
where完成签到,获得积分10
14秒前
星星完成签到,获得积分10
15秒前
chaserlife完成签到,获得积分10
15秒前
纯真的雨完成签到 ,获得积分10
16秒前
17秒前
xx发布了新的文献求助20
17秒前
18秒前
冰棍完成签到,获得积分10
19秒前
卑微三叶草完成签到,获得积分10
19秒前
20秒前
不配.应助yy采纳,获得10
21秒前
22秒前
木雷发布了新的文献求助10
22秒前
22秒前
冰棍发布了新的文献求助10
22秒前
23秒前
李新悦发布了新的文献求助10
24秒前
涂楚捷完成签到,获得积分10
25秒前
111完成签到 ,获得积分10
25秒前
nonosense完成签到,获得积分10
26秒前
27秒前
在水一方应助卑微三叶草采纳,获得10
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825