亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep CNN-based constitutive model for describing of statics characteristics of rock materials

覆盖层 本构方程 超参数 岩体分类 卷积神经网络 地质学 间断(语言学) 岩土工程 人工神经网络 算法 人工智能 变形(气象学) 静力学 计算机科学 数学 结构工程 工程类 有限元法 数学分析 海洋学 物理 经典力学
作者
Luyuan Wu,Dan Ma,Zifa Wang,Jianwei Zhang,Boyang Zhang,Jianhui Li,Jian Liao,Jingbo Tong
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:279: 109054-109054 被引量:20
标识
DOI:10.1016/j.engfracmech.2023.109054
摘要

The inhomogeneity, discontinuity, and elastoplasticity of the rock mass affect the deformation and failure of rock, and it is difficult to describe the stress–strain relationship of the rock mass by traditional constitutive models with a certain mathematical models. In order to address the complex problems caused by multiple variables, firstly, 77 rock specimens were collected from overburden of the working face 1012001 in Yuanzigou coal mine, China. Triaxial compression tests were carried out on these samples, and 673,632 data samples were output. Secondly, based on deep convolutional neural networks (CNN), a CNN-based rock constitutive model (CNNCM) was proposed. The structure and hyperparameters of deep CNN include M, ρ, Ed, υd, σz, and σy, as the input features, ɛz as the output features;Conv2D layers ×4; Max pooling2D layers×4; Dense layers ×4; learning rate_0.001; Epoch_ 200; Batch size_1024; Total params: 160801. Comparing the test results of eleven rock samples with the predicted results of CNNCM, the scope of MAPE and R2 from 0.52–1.94% and 0.999870–0.999988, which indicates the proposed CNNCM has good performance. The sensibility and correlation of physical parameters were analyzed, and the results show that the correlation of stress, Ed, υd, and ɛz is strong. Finally, considering the availability and simplicity of CNNCM, a new CNNCM is proposed though replacing the Ed and υd with E and υ, and different input features. The predictive performance of the trained CNNCMs(#6 and #2) is also performs well although the predicted results are worse than CNNCM #0. The different CNNCMs show that E has a great influence on the results and the rank of importance of other five features is E >σy >υ >M >ρ. This study proposes a machine learning method to describe the stress–strain relationship in the process of the rock failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqq发布了新的文献求助10
2秒前
rengar完成签到,获得积分10
4秒前
丸子完成签到 ,获得积分10
4秒前
8秒前
湘崽丫完成签到 ,获得积分10
9秒前
yangzai完成签到 ,获得积分0
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
14秒前
MMY完成签到,获得积分10
16秒前
坚强的秋白完成签到,获得积分10
17秒前
suge完成签到 ,获得积分10
17秒前
传奇3应助qqqq采纳,获得10
17秒前
MiRoRo完成签到 ,获得积分10
47秒前
47秒前
48秒前
Mercy发布了新的文献求助10
52秒前
chongqi发布了新的文献求助10
52秒前
Li完成签到,获得积分10
55秒前
chongqi完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
Mercy完成签到,获得积分10
1分钟前
顺顺科研完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
黄sir完成签到 ,获得积分10
1分钟前
王火火完成签到 ,获得积分10
1分钟前
梦玲完成签到 ,获得积分10
1分钟前
shain完成签到,获得积分10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590407
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795170
捐赠科研通 4631521
什么是DOI,文献DOI怎么找? 2532696
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617