已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep CNN-based constitutive model for describing of statics characteristics of rock materials

覆盖层 本构方程 超参数 岩体分类 卷积神经网络 地质学 间断(语言学) 岩土工程 人工神经网络 算法 人工智能 变形(气象学) 静力学 计算机科学 数学 结构工程 工程类 有限元法 数学分析 海洋学 物理 经典力学
作者
Luyuan Wu,Dan Ma,Zifa Wang,Jianwei Zhang,Boyang Zhang,Jianhui Li,Jian Liao,Jingbo Tong
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:279: 109054-109054 被引量:20
标识
DOI:10.1016/j.engfracmech.2023.109054
摘要

The inhomogeneity, discontinuity, and elastoplasticity of the rock mass affect the deformation and failure of rock, and it is difficult to describe the stress–strain relationship of the rock mass by traditional constitutive models with a certain mathematical models. In order to address the complex problems caused by multiple variables, firstly, 77 rock specimens were collected from overburden of the working face 1012001 in Yuanzigou coal mine, China. Triaxial compression tests were carried out on these samples, and 673,632 data samples were output. Secondly, based on deep convolutional neural networks (CNN), a CNN-based rock constitutive model (CNNCM) was proposed. The structure and hyperparameters of deep CNN include M, ρ, Ed, υd, σz, and σy, as the input features, ɛz as the output features;Conv2D layers ×4; Max pooling2D layers×4; Dense layers ×4; learning rate_0.001; Epoch_ 200; Batch size_1024; Total params: 160801. Comparing the test results of eleven rock samples with the predicted results of CNNCM, the scope of MAPE and R2 from 0.52–1.94% and 0.999870–0.999988, which indicates the proposed CNNCM has good performance. The sensibility and correlation of physical parameters were analyzed, and the results show that the correlation of stress, Ed, υd, and ɛz is strong. Finally, considering the availability and simplicity of CNNCM, a new CNNCM is proposed though replacing the Ed and υd with E and υ, and different input features. The predictive performance of the trained CNNCMs(#6 and #2) is also performs well although the predicted results are worse than CNNCM #0. The different CNNCMs show that E has a great influence on the results and the rank of importance of other five features is E >σy >υ >M >ρ. This study proposes a machine learning method to describe the stress–strain relationship in the process of the rock failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizigongzhu发布了新的文献求助10
刚刚
1秒前
None完成签到 ,获得积分10
1秒前
Ania99完成签到 ,获得积分10
1秒前
liuyue发布了新的文献求助10
3秒前
sunchengcehng发布了新的文献求助10
3秒前
zzyuyu完成签到 ,获得积分10
7秒前
xiaojia0501发布了新的文献求助10
7秒前
sunchengcehng完成签到,获得积分10
9秒前
和谐蛋蛋完成签到,获得积分10
11秒前
安逸的蓝白鸡汤完成签到,获得积分20
16秒前
liuyue完成签到,获得积分20
17秒前
小凯完成签到 ,获得积分10
18秒前
22秒前
22秒前
phospho完成签到,获得积分10
23秒前
24秒前
Li发布了新的文献求助10
25秒前
翟胜宇发布了新的文献求助10
27秒前
28秒前
33秒前
qq完成签到,获得积分20
34秒前
年鱼精完成签到 ,获得积分10
34秒前
自信号厂完成签到 ,获得积分10
35秒前
lalala完成签到 ,获得积分10
35秒前
乐乐乐乐乐乐应助duohao2023采纳,获得30
36秒前
growl完成签到,获得积分10
37秒前
DiviO_发布了新的文献求助10
38秒前
qq发布了新的文献求助10
39秒前
科研助手6应助似画采纳,获得10
39秒前
写个锤子完成签到,获得积分10
44秒前
pterionGao完成签到 ,获得积分10
47秒前
48秒前
海派Hi完成签到 ,获得积分10
49秒前
非洲大象给非洲大象的求助进行了留言
49秒前
皮皮完成签到 ,获得积分10
53秒前
鲁路修完成签到,获得积分10
54秒前
喜悦的小土豆完成签到 ,获得积分10
55秒前
55秒前
读书的时候完成签到,获得积分10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216