A deep CNN-based constitutive model for describing of statics characteristics of rock materials

覆盖层 本构方程 超参数 岩体分类 卷积神经网络 地质学 间断(语言学) 岩土工程 人工神经网络 算法 人工智能 变形(气象学) 静力学 计算机科学 数学 结构工程 工程类 有限元法 数学分析 海洋学 物理 经典力学
作者
Luyuan Wu,Dan Ma,Zifa Wang,Jianwei Zhang,Boyang Zhang,Jianhui Li,Jian Liao,Jingbo Tong
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:279: 109054-109054 被引量:8
标识
DOI:10.1016/j.engfracmech.2023.109054
摘要

The inhomogeneity, discontinuity, and elastoplasticity of the rock mass affect the deformation and failure of rock, and it is difficult to describe the stress–strain relationship of the rock mass by traditional constitutive models with a certain mathematical models. In order to address the complex problems caused by multiple variables, firstly, 77 rock specimens were collected from overburden of the working face 1012001 in Yuanzigou coal mine, China. Triaxial compression tests were carried out on these samples, and 673,632 data samples were output. Secondly, based on deep convolutional neural networks (CNN), a CNN-based rock constitutive model (CNNCM) was proposed. The structure and hyperparameters of deep CNN include M, ρ, Ed, υd, σz, and σy, as the input features, ɛz as the output features;Conv2D layers ×4; Max pooling2D layers×4; Dense layers ×4; learning rate_0.001; Epoch_ 200; Batch size_1024; Total params: 160801. Comparing the test results of eleven rock samples with the predicted results of CNNCM, the scope of MAPE and R2 from 0.52–1.94% and 0.999870–0.999988, which indicates the proposed CNNCM has good performance. The sensibility and correlation of physical parameters were analyzed, and the results show that the correlation of stress, Ed, υd, and ɛz is strong. Finally, considering the availability and simplicity of CNNCM, a new CNNCM is proposed though replacing the Ed and υd with E and υ, and different input features. The predictive performance of the trained CNNCMs(#6 and #2) is also performs well although the predicted results are worse than CNNCM #0. The different CNNCMs show that E has a great influence on the results and the rank of importance of other five features is E >σy >υ >M >ρ. This study proposes a machine learning method to describe the stress–strain relationship in the process of the rock failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助大虾来啦采纳,获得10
刚刚
1秒前
淡淡的小蜜蜂完成签到,获得积分10
1秒前
mygod发布了新的文献求助10
1秒前
汉堡包应助maitiandehe采纳,获得10
1秒前
panpan发布了新的文献求助10
2秒前
2秒前
3秒前
李贝宁完成签到 ,获得积分10
3秒前
脑洞疼应助千迁jiu采纳,获得10
4秒前
yayan发布了新的文献求助10
5秒前
huihui关注了科研通微信公众号
6秒前
醉熏的井发布了新的文献求助10
6秒前
出生完成签到,获得积分10
7秒前
蘑菇安哲发布了新的文献求助20
7秒前
7秒前
旺旺碎发布了新的文献求助10
7秒前
谨慎山彤完成签到 ,获得积分10
8秒前
9秒前
英俊的铭应助mygod采纳,获得10
10秒前
大龄中二病给大龄中二病的求助进行了留言
10秒前
王安娜完成签到 ,获得积分10
11秒前
12秒前
13秒前
烟花应助民族风采纳,获得10
14秒前
15秒前
Rqbnicsp完成签到,获得积分10
16秒前
飞跃完成签到 ,获得积分10
17秒前
hsialy完成签到,获得积分10
19秒前
镁铝完成签到,获得积分10
20秒前
沐言发布了新的文献求助10
20秒前
英姑应助张必雨采纳,获得10
21秒前
21秒前
凯旋预言完成签到 ,获得积分10
21秒前
wllllll发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086