亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep CNN-based constitutive model for describing of statics characteristics of rock materials

覆盖层 本构方程 超参数 岩体分类 卷积神经网络 地质学 间断(语言学) 岩土工程 人工神经网络 算法 人工智能 变形(气象学) 静力学 计算机科学 数学 结构工程 工程类 有限元法 数学分析 海洋学 物理 经典力学
作者
Luyuan Wu,Dan Ma,Zifa Wang,Jianwei Zhang,Boyang Zhang,Jianhui Li,Jian Liao,Jingbo Tong
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:279: 109054-109054 被引量:20
标识
DOI:10.1016/j.engfracmech.2023.109054
摘要

The inhomogeneity, discontinuity, and elastoplasticity of the rock mass affect the deformation and failure of rock, and it is difficult to describe the stress–strain relationship of the rock mass by traditional constitutive models with a certain mathematical models. In order to address the complex problems caused by multiple variables, firstly, 77 rock specimens were collected from overburden of the working face 1012001 in Yuanzigou coal mine, China. Triaxial compression tests were carried out on these samples, and 673,632 data samples were output. Secondly, based on deep convolutional neural networks (CNN), a CNN-based rock constitutive model (CNNCM) was proposed. The structure and hyperparameters of deep CNN include M, ρ, Ed, υd, σz, and σy, as the input features, ɛz as the output features;Conv2D layers ×4; Max pooling2D layers×4; Dense layers ×4; learning rate_0.001; Epoch_ 200; Batch size_1024; Total params: 160801. Comparing the test results of eleven rock samples with the predicted results of CNNCM, the scope of MAPE and R2 from 0.52–1.94% and 0.999870–0.999988, which indicates the proposed CNNCM has good performance. The sensibility and correlation of physical parameters were analyzed, and the results show that the correlation of stress, Ed, υd, and ɛz is strong. Finally, considering the availability and simplicity of CNNCM, a new CNNCM is proposed though replacing the Ed and υd with E and υ, and different input features. The predictive performance of the trained CNNCMs(#6 and #2) is also performs well although the predicted results are worse than CNNCM #0. The different CNNCMs show that E has a great influence on the results and the rank of importance of other five features is E >σy >υ >M >ρ. This study proposes a machine learning method to describe the stress–strain relationship in the process of the rock failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xgq关注了科研通微信公众号
2秒前
5秒前
Criminology34应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6.1应助liuliu采纳,获得30
19秒前
24秒前
11发布了新的文献求助10
30秒前
友好绿柏发布了新的文献求助10
47秒前
小马甲应助dawn采纳,获得10
1分钟前
1分钟前
dawn发布了新的文献求助10
1分钟前
善学以致用应助Fluoxtine采纳,获得10
1分钟前
黑鲨完成签到 ,获得积分10
1分钟前
Ava应助粗暴的坤采纳,获得10
1分钟前
瘦瘦的迎南完成签到 ,获得积分10
1分钟前
1分钟前
谷雨秋发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
J_Xu完成签到 ,获得积分10
2分钟前
所所应助凛玖niro采纳,获得10
2分钟前
2分钟前
凛玖niro发布了新的文献求助10
3分钟前
霖槿完成签到,获得积分10
3分钟前
3分钟前
十八完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
liuliu发布了新的文献求助30
4分钟前
4分钟前
烟花应助Li采纳,获得10
4分钟前
liuliu完成签到,获得积分20
4分钟前
4分钟前
5分钟前
ataybabdallah完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587