A deep CNN-based constitutive model for describing of statics characteristics of rock materials

覆盖层 本构方程 超参数 岩体分类 卷积神经网络 地质学 间断(语言学) 岩土工程 人工神经网络 算法 人工智能 变形(气象学) 静力学 计算机科学 数学 结构工程 工程类 有限元法 数学分析 海洋学 物理 经典力学
作者
Luyuan Wu,Dan Ma,Zifa Wang,Jianwei Zhang,Boyang Zhang,Jianhui Li,Jian Liao,Jingbo Tong
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:279: 109054-109054 被引量:20
标识
DOI:10.1016/j.engfracmech.2023.109054
摘要

The inhomogeneity, discontinuity, and elastoplasticity of the rock mass affect the deformation and failure of rock, and it is difficult to describe the stress–strain relationship of the rock mass by traditional constitutive models with a certain mathematical models. In order to address the complex problems caused by multiple variables, firstly, 77 rock specimens were collected from overburden of the working face 1012001 in Yuanzigou coal mine, China. Triaxial compression tests were carried out on these samples, and 673,632 data samples were output. Secondly, based on deep convolutional neural networks (CNN), a CNN-based rock constitutive model (CNNCM) was proposed. The structure and hyperparameters of deep CNN include M, ρ, Ed, υd, σz, and σy, as the input features, ɛz as the output features;Conv2D layers ×4; Max pooling2D layers×4; Dense layers ×4; learning rate_0.001; Epoch_ 200; Batch size_1024; Total params: 160801. Comparing the test results of eleven rock samples with the predicted results of CNNCM, the scope of MAPE and R2 from 0.52–1.94% and 0.999870–0.999988, which indicates the proposed CNNCM has good performance. The sensibility and correlation of physical parameters were analyzed, and the results show that the correlation of stress, Ed, υd, and ɛz is strong. Finally, considering the availability and simplicity of CNNCM, a new CNNCM is proposed though replacing the Ed and υd with E and υ, and different input features. The predictive performance of the trained CNNCMs(#6 and #2) is also performs well although the predicted results are worse than CNNCM #0. The different CNNCMs show that E has a great influence on the results and the rank of importance of other five features is E >σy >υ >M >ρ. This study proposes a machine learning method to describe the stress–strain relationship in the process of the rock failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy1226完成签到,获得积分10
刚刚
1秒前
陈某人完成签到,获得积分10
1秒前
1秒前
大气乐儿完成签到,获得积分10
1秒前
养猪的张三完成签到,获得积分10
1秒前
田様应助Lemon采纳,获得10
2秒前
Choi完成签到,获得积分10
2秒前
复杂的夜香完成签到 ,获得积分10
3秒前
魏莱完成签到,获得积分10
4秒前
4秒前
蒸馏水完成签到,获得积分10
5秒前
陈某人发布了新的文献求助10
5秒前
yinhe完成签到,获得积分10
5秒前
husy完成签到,获得积分10
6秒前
6秒前
戌博完成签到,获得积分10
7秒前
竹子发布了新的文献求助10
8秒前
彭于晏应助cb采纳,获得10
8秒前
葫芦娃完成签到,获得积分10
9秒前
Jasper应助iShine采纳,获得10
9秒前
lelele发布了新的文献求助10
10秒前
10秒前
11秒前
dongdoctor完成签到 ,获得积分10
11秒前
魏莱发布了新的文献求助10
11秒前
Ulrica完成签到,获得积分10
11秒前
CipherSage应助包容追命采纳,获得10
11秒前
owldan完成签到 ,获得积分10
13秒前
一直向前完成签到,获得积分10
13秒前
舒服的映安完成签到 ,获得积分10
13秒前
lmh011115发布了新的文献求助10
14秒前
15秒前
一直向前发布了新的文献求助10
15秒前
End完成签到 ,获得积分10
16秒前
沉静的红酒完成签到,获得积分10
17秒前
yzxzdm完成签到 ,获得积分10
17秒前
Yara.H完成签到 ,获得积分10
17秒前
Meng完成签到,获得积分10
18秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048