Latent profile analysis of depression among older adults living alone in China

萧条(经济学) 多项式logistic回归 焦虑 日常生活活动 逻辑回归 心理健康 老年学 心理干预 单变量分析 潜在类模型 心理学 多级模型 医学 生活满意度 精神科 多元分析 内科学 机器学习 宏观经济学 统计 经济 心理治疗师 计算机科学 数学
作者
Bailing Hou,Huijun Zhang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:325: 378-385 被引量:22
标识
DOI:10.1016/j.jad.2022.12.154
摘要

The number of older adults living alone has increased significantly. Depression is one of the significant mental health problems they face; classifying depressive conditions into homogeneous subgroups can help discover hidden information.The data comes from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Latent profile analysis (LPA) was used to identify depression subgroups among elderly living alone, Chi-square tests and Kruskal-Wallis tests were used to univariate analysis, multinomial logistic regression was used to analyze the related factors.1831 older adults living alone were identified and classified as low-level (30.4 %), moderate-level (55.3 %) and high-level (14.4 %). All variables, except age, were significant in the univariate analysis. Multinomial logistic regression showed that not participating in exercise, sometimes interacting with friends, anxiety symptoms, and impaired IADL were associated with the moderate- and high-level of depression in older adults living alone; good or fair self-rated health and life satisfaction were associated with the low-level of depression in older adults living alone. Anxiety symptoms were associated with high-level of depression in older adults living alone compared to moderate-level; good or fair self-rated health and life satisfaction were associated with moderate-level of depression in older adults living alone.The CES-D-10 cannot fully determine the presence of depression in elderly people living alone at high-level.In future primary health care, it would be more meaningful to provide targeted interventions for different subgroups of depression in older adults living alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
香蕉觅云应助zfzf0422采纳,获得10
2秒前
3秒前
3秒前
李健应助爱听歌的向日葵采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得80
4秒前
所所应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得30
5秒前
婷婷发布了新的文献求助10
5秒前
zzt完成签到,获得积分10
7秒前
张小汉发布了新的文献求助30
8秒前
二十四发布了新的文献求助10
8秒前
赘婿应助junzilan采纳,获得10
8秒前
FashionBoy应助勤恳的雨文采纳,获得10
8秒前
aaa完成签到,获得积分10
9秒前
10秒前
11111完成签到,获得积分20
11秒前
仔wang完成签到,获得积分10
11秒前
13秒前
忘羡222发布了新的文献求助20
13秒前
13秒前
温暖涫完成签到,获得积分10
15秒前
11111发布了新的文献求助10
15秒前
健忘的牛排完成签到,获得积分10
16秒前
wmmm完成签到,获得积分10
16秒前
Akim应助爱吃泡芙采纳,获得10
16秒前
老迟到的书雁完成签到 ,获得积分10
16秒前
16秒前
正经俠发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824