催化作用
双金属片
双金属
苯酚
氮化碳
化学
石墨氮化碳
降级(电信)
激进的
活性炭
无机化学
核化学
光催化
有机化学
吸附
物理化学
电信
计算机科学
作者
Miao Tian,Xuechang Ren,Suying Ding,Ning Fu,Yajun Wei,Zhenyu Yang,Xiaoqing Yao
标识
DOI:10.1016/j.envres.2023.117848
摘要
The application of bimetal supported graphite phase carbon nitride in activated peroxymonosulfate (PMS) process has become a research hotspot in recent years. In this study, 8-g C3N4/Mo/Ni composite catalyst material was successfully prepared by doping Mo and Ni in graphite phase carbon nitride. The bimetallic active sites were formed in the catalyst, and PMS was activated by the metal valence Mo6+/Mo4+ and Ni2+/Ni(0) through redox double cycle to effectively degrade phenol. When pH was neutral, the degradation rate of 20 mg/L phenol solution with 8-g C3N4/Mo/Ni (0.35 g/L) and PMS (0.6 mM) could reach 95% within 20 min. The degradation rate of 8-g C3N4/Mo/Ni/PMS catalytic system could reach more than 90% within 20min under the condition of pH range of 3–11 and different anions. Meanwhile, the degradation effects of RhB, MB and OFX on different pollutants within 30min were 99%, 100% and 82%, respectively. Electron spin resonance and quenching experiments showed that in 8-g C3N4/Mo/Ni/PMS system, the degradation mechanism was mainly non-free radicals, and the main active species in the degradation process was 1O2. This study provides a new idea for the study of bimetal supported graphite phase carbon nitride activation of PMS and the theoretical study of degradation mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI