Nanosheet assembled NiO-doped-ZnO flower-like sensors for highly sensitive hydrogen sulfide gas detection

纳米片 材料科学 非阻塞I/O 硫化氢 吸附 硫化物 扫描电子显微镜 化学工程 纳米技术 选择性 冶金 硫黄 复合材料 有机化学 催化作用 化学 工程类
作者
Jesse Nii Okai Amu-Darko,Shahid Hussain,Eliasu Issaka,Mingyuan Wang,Asma A. Alothman,Shuangying Lei,Guanjun Qiao,Guiwu Liu
出处
期刊:Ceramics International [Elsevier BV]
卷期号:50 (10): 17681-17690 被引量:8
标识
DOI:10.1016/j.ceramint.2024.02.257
摘要

Hydrogen sulfide (H2S) gas is a dual menace since it is not only hazardous to human health and the environment, but it is also flammable. Given these crucial considerations, the need for competent gas sensors for H2S detection becomes apparent. In this endeavor, an investigation of the gas-sensing prowess inherent in sensors made from assembled nanosheets of ZnO–NiO arranged into intricate flower-like structures. The sensing materials were prepared using a straightforward hydrothermal process. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to thoroughly examine the sensor's chemical properties and structural composition. The gas-sensing abilities of the sensing materials were rigorously assessed, which included a close examination of their electrical response to varied concentrations of H2S. The efficacy of the sensors may be due to the synergistic interactions between their distinct flower-like design, endowing them with an expansive surface area for optimum gas adsorption, and the significant catalytic impact supplied by the composition of ZnO–NiO. The results show that the ZnO–NiO flower-like sensors have high sensitivity, selectivity, and stability to H2S gas. Within the studied range, the response and recovery times were 51.43 s and 38.11 s respectively at 250 °C in 100 ppm H2S. This amalgamation of attributes manifests as an enhancement in the sensors' gas-sensing capabilities, highlighting their suitability for such an application. This research complements the explanation offered by first-principles calculations based on Density Functional Theory (DFT) to dive into the fundamentals of this gas-sensing mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助阿凉采纳,获得10
1秒前
Jiangpeng完成签到,获得积分10
1秒前
活力初蝶完成签到,获得积分10
1秒前
李健应助zzhi采纳,获得10
3秒前
TJH完成签到,获得积分10
3秒前
柠檬完成签到 ,获得积分10
4秒前
华仔应助229536051213wee采纳,获得10
5秒前
5秒前
李小二完成签到,获得积分10
8秒前
8秒前
田心完成签到,获得积分10
9秒前
9秒前
抽象电台头完成签到,获得积分10
9秒前
yeah发布了新的文献求助10
11秒前
打打应助孤独的根号三采纳,获得10
11秒前
zzz完成签到,获得积分10
12秒前
ye1121发布了新的文献求助10
12秒前
称心的板栗完成签到,获得积分10
14秒前
苏晋强发布了新的文献求助10
14秒前
15秒前
彭于晏应助zz采纳,获得10
16秒前
懵懂的钢笔完成签到,获得积分10
16秒前
16秒前
斯文的邪欢关注了科研通微信公众号
17秒前
coin完成签到,获得积分10
17秒前
caimeng完成签到,获得积分10
17秒前
光亮的太阳完成签到,获得积分10
19秒前
coldbee完成签到,获得积分10
19秒前
purplelove完成签到 ,获得积分10
20秒前
YT发布了新的文献求助10
21秒前
科研通AI6应助高铅酸采纳,获得10
21秒前
来活完成签到,获得积分10
22秒前
小马甲应助云上的苍茫采纳,获得10
22秒前
gabel完成签到 ,获得积分10
23秒前
24秒前
曹毅凯完成签到,获得积分10
24秒前
着急的问凝关注了科研通微信公众号
24秒前
hhhh完成签到,获得积分10
25秒前
zy完成签到,获得积分10
25秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800