SelectE: Multi-scale adaptive selection network for knowledge graph representation learning

计算机科学 选择(遗传算法) 人工智能 图形 比例(比率) 理论计算机科学 机器学习 地理 地图学
作者
Lizheng Zu,Lin Lin,Song Fu,Feng Guo,Jin‐Lei Wu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:291: 111554-111554
标识
DOI:10.1016/j.knosys.2024.111554
摘要

Most knowledge graphs in the real world suffer from incompleteness which can be addressed through knowledge graph representation learning (KGRL) techniques that use known facts to infer missing links. In this paper, a novel multi-scale adaptive selection network for KGRL, namely SelectE, is developed to learn richer multi-scale interactive features and automatically select important features, thereby achieving promising KGRL performance. Specifically, first, the input feature matrix is redesigned to better cooperate with multi-scale convolution to improve the interaction of entities and relations. Second, a multi-scale learning module is designed to learn richer multi-scale features from the input matrix using multiple branches with different kernel sizes. Third, to automatically strengthen the important features and suppress the useless features, a multi-scale adaptive selection mechanism is proposed to dynamically allocate the weights of the obtained features based on their contained information. The core of SelectE is to maximize interactions while also considering how to better utilize features. Finally, the outstanding performance of SelectE is validated by a series of comparison experiments on seven benchmark datasets (FB15k-237, WN18RR, FB15k, WN18, YAGO3–10, KINSHIP, UMLS). The experimental results show that SelectE outperforms other state-of-the-art models, demonstrating its remarkable performance and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
eryaclover发布了新的文献求助10
4秒前
善学以致用应助锦鲤禾采纳,获得10
5秒前
李健的小迷弟应助夏明明采纳,获得10
5秒前
田様应助专玩对抗路采纳,获得10
5秒前
7秒前
berry发布了新的文献求助10
12秒前
隐形曼青应助hanxinyi采纳,获得10
15秒前
16秒前
16秒前
berry完成签到,获得积分10
17秒前
夏明明发布了新的文献求助10
19秒前
小飞完成签到 ,获得积分10
19秒前
20秒前
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
薰硝壤应助科研通管家采纳,获得30
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
21秒前
zjkzh发布了新的文献求助10
21秒前
小华乂跤417完成签到,获得积分10
22秒前
22秒前
年轻的白梦完成签到,获得积分10
26秒前
27秒前
1111发布了新的文献求助10
28秒前
mervin完成签到,获得积分10
30秒前
31秒前
科研通AI2S应助aa采纳,获得10
31秒前
古月完成签到,获得积分10
33秒前
33秒前
Jasper应助1111采纳,获得10
33秒前
35秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3087327
求助须知:如何正确求助?哪些是违规求助? 2740025
关于积分的说明 7557198
捐赠科研通 2389737
什么是DOI,文献DOI怎么找? 1267375
科研通“疑难数据库(出版商)”最低求助积分说明 613656
版权声明 598611