SelectE: Multi-scale adaptive selection network for knowledge graph representation learning

计算机科学 选择(遗传算法) 人工智能 图形 比例(比率) 理论计算机科学 机器学习 地理 地图学
作者
Lizheng Zu,Lin Lin,Song Fu,Feng Guo,Jin‐Lei Wu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:291: 111554-111554
标识
DOI:10.1016/j.knosys.2024.111554
摘要

Most knowledge graphs in the real world suffer from incompleteness which can be addressed through knowledge graph representation learning (KGRL) techniques that use known facts to infer missing links. In this paper, a novel multi-scale adaptive selection network for KGRL, namely SelectE, is developed to learn richer multi-scale interactive features and automatically select important features, thereby achieving promising KGRL performance. Specifically, first, the input feature matrix is redesigned to better cooperate with multi-scale convolution to improve the interaction of entities and relations. Second, a multi-scale learning module is designed to learn richer multi-scale features from the input matrix using multiple branches with different kernel sizes. Third, to automatically strengthen the important features and suppress the useless features, a multi-scale adaptive selection mechanism is proposed to dynamically allocate the weights of the obtained features based on their contained information. The core of SelectE is to maximize interactions while also considering how to better utilize features. Finally, the outstanding performance of SelectE is validated by a series of comparison experiments on seven benchmark datasets (FB15k-237, WN18RR, FB15k, WN18, YAGO3–10, KINSHIP, UMLS). The experimental results show that SelectE outperforms other state-of-the-art models, demonstrating its remarkable performance and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
sakura发布了新的文献求助10
2秒前
2秒前
4秒前
roselin26发布了新的文献求助20
4秒前
chenxing1947发布了新的文献求助10
6秒前
SZH发布了新的文献求助10
7秒前
无心的若山完成签到,获得积分10
8秒前
深情安青应助Joe采纳,获得10
9秒前
隔壁老王完成签到,获得积分10
9秒前
打工人不酷完成签到 ,获得积分10
9秒前
9秒前
霸气紫文应助维维采纳,获得10
11秒前
codwest发布了新的文献求助10
13秒前
ding应助ppg123采纳,获得10
14秒前
14秒前
Ava应助坚定尔白采纳,获得10
14秒前
曾经豌豆完成签到,获得积分10
15秒前
15秒前
曾经豌豆发布了新的文献求助10
17秒前
念遇完成签到,获得积分10
18秒前
所所应助典雅的俊驰采纳,获得10
19秒前
乔心发布了新的文献求助10
19秒前
亚鲁完成签到,获得积分10
20秒前
21秒前
旺仔完成签到 ,获得积分10
23秒前
zero完成签到,获得积分10
25秒前
Murphy发布了新的文献求助10
25秒前
26秒前
26秒前
英姑应助sakura采纳,获得10
27秒前
祖半梦发布了新的文献求助10
27秒前
852应助乔心采纳,获得10
27秒前
Andy1409完成签到,获得积分10
28秒前
你说的完成签到 ,获得积分10
29秒前
29秒前
30秒前
Solarenergy完成签到,获得积分0
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312341
求助须知:如何正确求助?哪些是违规求助? 2944981
关于积分的说明 8522464
捐赠科研通 2620767
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187