Integrating data assimilation, crop model, and machine learning for winter wheat yield forecasting in the North China Plain

数据同化 环境科学 粮食安全 作物产量 农业工程 作物 产量(工程) 气象学 农学 地理 农业 工程类 生物 考古 冶金 材料科学
作者
Huimin Zhuang,Zhao Zhang,Fei Cheng,Jichong Han,Yuchuan Luo,Liangliang Zhang,Juan Cao,Jing Zhang,Bangke He,Jialu Xu,Fulu Tao
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:347: 109909-109909 被引量:31
标识
DOI:10.1016/j.agrformet.2024.109909
摘要

Timely and reliable regional crop yield forecasting before harvest is critical for managing climate risk, adjusting agronomic management, and making food trade policy. Although various methods exist for crop yield forecasting, including process-based crop models and machine learning techniques, the potential of integrating these methods for early-season yield forecasts has not been well investigated. In this study, we proposed a hybrid framework for crop yield forecasting that firstly assimilated leaf area index and soil moisture into a crop model and then combined the data-assimilated crop model with machine learning techniques to improve the prediction skill further. The proposed framework was applied to winter wheat yield forecasting in the North China Plain during 2009–2015. We found that the assimilation significantly enhances wheat yield estimates, achieving additional ACC = 0.27, MAPE = 6.12 %. Incorporating weather forecasts enabled reliable winter wheat yield forecasts up to 1–3 months in advance, achieving ACC = 0.69, MAPE = 7.79 %. Furthermore, integrating the assimilated crop model with machine learning techniques improved the forecasting further, achieving ACC = 0.97 and MAPE = 1.74 %. The proposed framework for crop yield forecasting can be adapted to other crops and regions and has great potential in developing food security early warning system at a regional scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无脚鸟发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助高迪采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
gxudmy发布了新的文献求助10
2秒前
2秒前
3秒前
谦让碧菡完成签到,获得积分10
3秒前
酷酷阑香发布了新的文献求助10
4秒前
cetomacrogol发布了新的文献求助30
5秒前
6秒前
su发布了新的文献求助10
7秒前
斯文败类应助饼饼采纳,获得10
7秒前
我是波少发布了新的文献求助10
7秒前
思源应助看看采纳,获得10
7秒前
木木完成签到,获得积分10
7秒前
无限向珊发布了新的文献求助10
7秒前
cat_head发布了新的文献求助10
7秒前
Sugar发布了新的文献求助10
7秒前
8秒前
ljy完成签到,获得积分20
8秒前
bkagyin应助aabb采纳,获得10
8秒前
9秒前
9秒前
走着走着就散了完成签到,获得积分10
10秒前
Hoshi关注了科研通微信公众号
11秒前
针不戳发布了新的文献求助10
11秒前
852应助林莹采纳,获得10
11秒前
烟花应助滕擎采纳,获得10
12秒前
12秒前
多喝水完成签到,获得积分10
12秒前
wangyizhuo完成签到,获得积分10
12秒前
13秒前
fu发布了新的文献求助10
13秒前
15秒前
baobao完成签到,获得积分10
15秒前
www发布了新的文献求助50
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587994
求助须知:如何正确求助?哪些是违规求助? 4003679
关于积分的说明 12394679
捐赠科研通 3680211
什么是DOI,文献DOI怎么找? 2028553
邀请新用户注册赠送积分活动 1062040
科研通“疑难数据库(出版商)”最低求助积分说明 948062