Integrating data assimilation, crop model, and machine learning for winter wheat yield forecasting in the North China Plain

数据同化 环境科学 粮食安全 作物产量 农业工程 作物 产量(工程) 气象学 农学 地理 农业 工程类 生物 考古 冶金 材料科学
作者
Huimin Zhuang,Zhao Zhang,Fei Cheng,Jichong Han,Yuchuan Luo,Liangliang Zhang,Juan Cao,Jing Zhang,Bangke He,Jialu Xu,Fulu Tao
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:347: 109909-109909 被引量:31
标识
DOI:10.1016/j.agrformet.2024.109909
摘要

Timely and reliable regional crop yield forecasting before harvest is critical for managing climate risk, adjusting agronomic management, and making food trade policy. Although various methods exist for crop yield forecasting, including process-based crop models and machine learning techniques, the potential of integrating these methods for early-season yield forecasts has not been well investigated. In this study, we proposed a hybrid framework for crop yield forecasting that firstly assimilated leaf area index and soil moisture into a crop model and then combined the data-assimilated crop model with machine learning techniques to improve the prediction skill further. The proposed framework was applied to winter wheat yield forecasting in the North China Plain during 2009–2015. We found that the assimilation significantly enhances wheat yield estimates, achieving additional ACC = 0.27, MAPE = 6.12 %. Incorporating weather forecasts enabled reliable winter wheat yield forecasts up to 1–3 months in advance, achieving ACC = 0.69, MAPE = 7.79 %. Furthermore, integrating the assimilated crop model with machine learning techniques improved the forecasting further, achieving ACC = 0.97 and MAPE = 1.74 %. The proposed framework for crop yield forecasting can be adapted to other crops and regions and has great potential in developing food security early warning system at a regional scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助hoshi采纳,获得10
1秒前
科研通AI2S应助舒博博采纳,获得10
2秒前
Ava应助111采纳,获得10
2秒前
2秒前
Xangel发布了新的文献求助30
2秒前
zero_sky发布了新的文献求助10
2秒前
3秒前
上官若男应助体贴的采蓝采纳,获得10
3秒前
王十三发布了新的文献求助30
4秒前
4秒前
5秒前
ding应助结实的红酒采纳,获得10
6秒前
学术小透明完成签到,获得积分10
6秒前
潇洒代亦完成签到,获得积分10
6秒前
guandada完成签到,获得积分10
7秒前
领导范儿应助sdfer23采纳,获得10
7秒前
小小发布了新的文献求助10
8秒前
乐乐应助风清扬采纳,获得10
8秒前
寒冷凌瑶发布了新的文献求助10
8秒前
爆米花应助陶逸豪采纳,获得10
9秒前
ho应助xczhu采纳,获得10
10秒前
林深完成签到,获得积分10
11秒前
星辰大海应助weilao采纳,获得10
11秒前
傲娇芷容发布了新的文献求助10
11秒前
12秒前
王腾锐发布了新的文献求助10
13秒前
13秒前
13秒前
Wenyilong发布了新的文献求助10
14秒前
斯文败类应助Xangel采纳,获得10
15秒前
Cecilia_koala完成签到,获得积分10
15秒前
16秒前
王十三完成签到,获得积分10
16秒前
17秒前
17秒前
Tracy完成签到,获得积分10
18秒前
英姑应助jiqihao采纳,获得10
19秒前
19秒前
怕孤独的白竹完成签到,获得积分10
20秒前
Frank完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354986
求助须知:如何正确求助?哪些是违规求助? 4486944
关于积分的说明 13968439
捐赠科研通 4387716
什么是DOI,文献DOI怎么找? 2410452
邀请新用户注册赠送积分活动 1402979
关于科研通互助平台的介绍 1376705