双金属
双金属片
碳化
钴
化学
碳纤维
浸出(土壤学)
石墨
化学工程
猝灭(荧光)
催化作用
材料科学
无机化学
吸附
复合数
物理化学
复合材料
有机化学
工程类
环境科学
物理
量子力学
土壤科学
荧光
土壤水分
作者
Hui Li,Xinlei Ren,Wenxue Pan,Shiting Zhu,Jin Zhang,Zhiyuan Yang,Qian Liu,Yueying Wang,Yujing Huang,Lin Guo,Minghui Xiang
标识
DOI:10.1016/j.jece.2024.112062
摘要
The reasonable control of the structure of metal–organic frameworks (MOFs) is a promising strategy for improving their peroxymonosulfate (PMS) activation activity. In this study, ZIF-67 @ZIF-8 was used as a template to prepare bimetallic core–shell Co-Fe@NC via Fe doping and high-temperature carbonization. Co-Fe@NC maintained the core–shell structure of the original MOF, in which cobalt was uniformly distributed in the nitrogen-doped graphite carbon skeleton and the surface of the graphite carbon skeleton was covered with iron. With the synergistic effect of the nitrogen-doped graphite carbon skeleton, iron, and cobalt, 100% of tetrabromobisphenol S (TBBPS) was removed in 60 min with kobs = 0.062 min−1 in [email protected]/PMS system. The addition of iron increased the graphitization degree with ID/IG value increased from 0.98 (Co@NC) to 1.034 ([email protected]) and electron transfer rate of the carbon skeleton. Besides, the Co leaching was effectively attenuated from 1.86 mg/L(Co@NC) to 0.78 mg/L ([email protected]) by the core-shell structure and bimetal strategy. Both O2·- and 1O2 contributed to the degradation of TBBPS according to quenching experiments. TBBPS was deeply degraded into small-molecule compounds through three degradation pathways by the [email protected]/PMS system. This study provides a new strategy for designing highly efficient bimetal–carbon composites for environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI