组分(热力学)
共价键
还原(数学)
化学
金属有机骨架
组合化学
有机化学
物理
数学
热力学
几何学
吸附
作者
Minghao Liu,Cheng‐Xing Cui,Shuai Yang,Xiubei Yang,Xuewen Li,Jun He,Qing Xu,Gaofeng Zeng
标识
DOI:10.1002/anie.202401750
摘要
Abstract The catalytic performance for electrocatalytic CO 2 reduction reaction (CO 2 RR) depends on the binding strength of the reactants and intermediates. Covalent organic frameworks (COFs) have been adopted to catalyze CO 2 RR, and their binding abilities are tuned via constructing donor‐acceptor (DA) systems. However, most DA COFs have single donor and acceptor units, which caused wide‐range but lacking accuracy in modulating the binding strength of intermediates. More elaborate regulation of the interactions with intermediates are necessary and challenge to construct high‐efficiency catalysts. Herein, the three‐component COF with D‐A‐A units was first constructed by introducing electron‐rich diarylamine unit, electron‐deficient benzothiazole and Co‐porphyrin units. Compared with two‐component COFs, the designed COF exhibit elevated electronic conductivity, enhanced reducibility, high efficiency charge transfer, further improving the electrocatalytic CO 2 RR performance with the faradic efficiency of 97.2 % at −0.8 V and high activity with the partial current density of 27.85 mA cm −2 at −1.0 V which exceed other two‐component COFs. Theoretical calculations demonstrate that catalytic sites in three‐component COF have suitable binding ability of the intermediates, which are benefit for formation of *COOH and desorption of *CO. This work offers valuable insights for the advancement of multi‐component COFs, enabling modulated charge transfer to improve the CO 2 RR activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI