计算机科学
人工智能
发电机(电路理论)
截断(统计)
生成对抗网络
计算机视觉
深度学习
物理
功率(物理)
量子力学
机器学习
作者
Xinru Chen,Yao Zhao,Laurence E. Court,He Wang,Tinsu Pan,Jack Phan,Xin Wang,Yao Ding,Jinzhong Yang
标识
DOI:10.1016/j.compmedimag.2024.102353
摘要
Creating synthetic CT (sCT) from magnetic resonance (MR) images enables MR-based treatment planning in radiation therapy. However, the MR images used for MR-guided adaptive planning are often truncated in the boundary regions due to the limited field of view and the need for sequence optimization. Consequently, the sCT generated from these truncated MR images lacks complete anatomic information, leading to dose calculation error for MR-based adaptive planning. We propose a novel structure-completion generative adversarial network (SC-GAN) to generate sCT with full anatomic details from the truncated MR images. To enable anatomy compensation, we expand input channels of the CT generator by including a body mask and introduce a truncation loss between sCT and real CT. The body mask for each patient was automatically created from the simulation CT scans and transformed to daily MR images by rigid registration as another input for our SC-GAN in addition to the MR images. The truncation loss was constructed by implementing either an auto-segmentor or an edge detector to penalize the difference in body outlines between sCT and real CT. The experimental results show that our SC-GAN achieved much improved accuracy of sCT generation in both truncated and untruncated regions compared to the original cycleGAN and conditional GAN methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI