SC-GAN: Structure-Completion Generative Adversarial Network for Synthetic CT Generation from MR Images with Truncated Anatomy

计算机科学 人工智能 发电机(电路理论) 截断(统计) 生成对抗网络 计算机视觉 深度学习 物理 量子力学 机器学习 功率(物理)
作者
Xinru Chen,Yao Zhao,Laurence E. Court,He Wang,Tinsu Pan,Jack Phan,Xin Wang,Yao Ding,Jinzhong Yang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:113: 102353-102353
标识
DOI:10.1016/j.compmedimag.2024.102353
摘要

Creating synthetic CT (sCT) from magnetic resonance (MR) images enables MR-based treatment planning in radiation therapy. However, the MR images used for MR-guided adaptive planning are often truncated in the boundary regions due to the limited field of view and the need for sequence optimization. Consequently, the sCT generated from these truncated MR images lacks complete anatomic information, leading to dose calculation error for MR-based adaptive planning. We propose a novel structure-completion generative adversarial network (SC-GAN) to generate sCT with full anatomic details from the truncated MR images. To enable anatomy compensation, we expand input channels of the CT generator by including a body mask and introduce a truncation loss between sCT and real CT. The body mask for each patient was automatically created from the simulation CT scans and transformed to daily MR images by rigid registration as another input for our SC-GAN in addition to the MR images. The truncation loss was constructed by implementing either an auto-segmentor or an edge detector to penalize the difference in body outlines between sCT and real CT. The experimental results show that our SC-GAN achieved much improved accuracy of sCT generation in both truncated and untruncated regions compared to the original cycleGAN and conditional GAN methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧芷巧发布了新的文献求助10
刚刚
AiX-zzzzz发布了新的文献求助10
2秒前
Orange应助小妮采纳,获得10
3秒前
扶光完成签到 ,获得积分10
4秒前
汉堡包应助瘦瘦妖妖采纳,获得10
5秒前
hhhzzy完成签到,获得积分10
7秒前
7秒前
十字路口完成签到,获得积分10
8秒前
fnnnnn发布了新的文献求助20
8秒前
领导范儿应助聪慧芷巧采纳,获得10
9秒前
11秒前
贺兰发布了新的文献求助10
11秒前
12秒前
13秒前
慕凝发布了新的文献求助10
13秒前
lsn完成签到,获得积分10
13秒前
liuynnn发布了新的文献求助30
16秒前
16秒前
小妮发布了新的文献求助10
16秒前
善学以致用应助Magical采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
trial发布了新的文献求助10
18秒前
coolkid应助小学虫采纳,获得20
18秒前
19秒前
fixing发布了新的文献求助10
19秒前
yyy关闭了yyy文献求助
21秒前
21秒前
在水一方应助JingY采纳,获得10
22秒前
内向怀曼发布了新的文献求助10
22秒前
flance完成签到 ,获得积分10
22秒前
liuynnn完成签到,获得积分20
23秒前
瘦瘦妖妖发布了新的文献求助10
23秒前
华仔应助贺兰采纳,获得10
24秒前
香蕉觅云应助99668采纳,获得10
25秒前
兜哥完成签到,获得积分10
27秒前
慕凝完成签到,获得积分20
28秒前
bkagyin应助oyx53采纳,获得10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019