基因
免疫系统
医学
扩张型心肌病
基因表达谱
计算生物学
基因表达
基因共表达网络
心力衰竭
遗传学
生物
免疫学
内科学
基因本体论
作者
Yixuan Lin,Kaicong Chen,Jinhua Guo,Pengxiao Chen,Zhi Rong Qian,Tong Zhang
标识
DOI:10.1016/j.ijcard.2023.131702
摘要
Background Dilated cardiomyopathy (DCM) is a leading cause of heart failure. Cuproptosis is involved in various diseases, although its role in DCM is still unclear. Here, this study aims to investigate the feasibility of using genes related to cuproptosis as diagnostic biomarkers for DCM and the association of their expression with immune infiltration and drug target in cardiac tissue. Methods Gene expression data from nonfailure (NF) and DCM samples were retrieved from the GEO database. Cuproptosis scores were calculated using single-sample gene set enrichment analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) was used to screen key modules associated with DCM and cuproptosis. Random forest and least absolute shrinkage and selection operator (LASSO) were applied to identify signature genes. Finally, immune cell infiltration was assessed using ssGSEA. mRNA-miRNA-lncRNA regulatory networks and chemical-drug regulatory networks based on signature genes were analyzed by Cytoscape. Results 8 modules were aggregated by WGCNA, among which MEblue was significantly associated with cuproptosis scores and DCM. A diagnostic model made up of six signature genes including SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1 was selected. Furthermore, immune infiltration studies showed significant differences between DCM and NF. Drugs networks and ceRNA regulatory network based on six signature genes were successfully constructed. Conclusion Six signature genes (SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1) were identified as novel diagnostic biomarkers in DCM. In addition, the expression of these genes was associated with immune cell infiltration, suggesting that cuproptosis may be involved in the immune regulation of DCM.
科研通智能强力驱动
Strongly Powered by AbleSci AI