This work investigates the crack propagation in composites by adopting a novel full three-dimensional (3D) Hashin-based orthotropic damage model combined with higher-order one-dimensional (1D) finite elements based on the Carrera Unified Formulation (CUF). Previous literature has proven that CUF provides structural formulations with great accuracy and improved computational efficiency. Moreover, a Layer-Wise (LW) formulation can be implemented within the CUF framework, allowing an accurate description of the 3D stress state in composite laminate, representing crucial information for progressive failure analysis. A Newton–Raphson predictor–corrector algorithm is used for the numerical solution of classical case tests, i.e., compact tension and three-point bending tests. The obtained results are compared with experimental outcomes and with solutions from well-established 2D damage models and a 3D Abaqus numerical model, demonstrating the capability of the proposed method to efficiently capture both the failure load and shape of the crack pattern.